如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)∠A在什么范圍內(nèi)變化時,四邊形ACFE是梯形,并說明理由;
(3)∠A在什么范圍內(nèi)變化時,線段DE上存在點G,滿足條件DG=DA,并說明理由.

【答案】分析:(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得到CE=BC.從而得到∠CBE=∠CEB,再根據(jù)等角的余角相等證明∠FBE=∠FEB,得到BF=EF.根據(jù)等角的余角相等以及等角對等邊再進一步證明EF=DF,最后得到BF=DF;
(2)根據(jù)中位線定理得到AE∥CF.要保證是梯形,必須是另一組對邊不平行.首先探索另一組對邊平行時∠A的度數(shù),從而得到是梯形時的取值范圍;
(3)從若要滿足的結論出發(fā),結合上述結論進行分析,先探求∠D的取值范圍,再進一步得到∠A的取值范圍.
解答:(1)證明:在Rt△AEB中,
∵AC=BC,
∴CE=AB,
∴CB=CE,
∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF,
∴EF=BF.
∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,
∴∠FED=∠EDF.
∴BF=FD;

(2)解:由(1)BF=FD,而BC=CA,
∴CF∥AD,即AE∥CF.
若AC∥EF,則AC=EF,
∴BC=BF.∴BA=BD,∠A=45°.
∴0°<∠A<90°且∠A≠45°時,四邊形ACFE為梯形;

(3)解:作GH⊥BD,垂足為H,則GH∥AB.
∵DG=DA,
∴DH=DB.
又F為BD中點,
∴H為DF的中點.
∴GH為DF的中垂線.
∴∠GDF=∠GFD.
∵點G在ED上,
∴∠EFD≥∠GFD.
∵∠EFD+∠FDE+∠DEF=180°,
∴∠GFD+∠FDE+∠DEF≤180度.
∴3∠EDF≤180度.
∴∠EDF≤60度.
又∠A+∠EDF=90°,
∴30°≤∠A<90°.
∴當30°≤∠A<90°時,
DE上存在點G,滿足條件DG=DA.
點評:對學生三角形、四邊形等有關知識的考查,主要體現(xiàn)在三角形全等的判定,直角三角形的中線性質(zhì),三角形的中位線性質(zhì)、梯形的定義等知識.第小題(3)的解決需具備扎實的基礎知識和一定的探究能力,本題具有一定的區(qū)分度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合)精英家教網(wǎng),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)∠A在什么范圍內(nèi)變化時,四邊形ACFE是梯形,并說明理由;
(3)∠A在什么范圍內(nèi)變化時,線段DE上存在點G,滿足條件DG=
14
DA,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合)精英家教網(wǎng),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)點D在運動過程中能否使得四邊形ACFE為平行四邊形?如不能,請說明理由;如能,求出此時∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2012年10月中考數(shù)學模擬試卷(12)(解析版) 題型:解答題

如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)點D在運動過程中能否使得四邊形ACFE為平行四邊形?如不能,請說明理由;如能,求出此時∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省鄭州市中考數(shù)學考前5套題(二)(解析版) 題型:解答題

如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)點D在運動過程中能否使得四邊形ACFE為平行四邊形?如不能,請說明理由;如能,求出此時∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省綏化市慶安縣發(fā)展中學中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•黃石)如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)∠A在什么范圍內(nèi)變化時,四邊形ACFE是梯形,并說明理由;
(3)∠A在什么范圍內(nèi)變化時,線段DE上存在點G,滿足條件DG=DA,并說明理由.

查看答案和解析>>

同步練習冊答案