【題目】如圖,AB∥CD,E為AC上一點(diǎn),∠ABE=∠AEB,∠CDE=∠CED. 求證:BE⊥DE.
【答案】證明: ∵∠ABE=∠AEB,
∴∠A=180°﹣2∠AEB,
同理∠C=180°﹣2∠CED,
∵AB∥CD,
∴∠A+∠C=180°,
∴180°﹣2∠AEB+180°﹣2∠CED=180°,
∴∠AEB+∠CED=90°,
∴∠BED=90°,
∴BE⊥DE.
【解析】利用三角形內(nèi)角和定理可把∠A和∠C分別用∠AEB和∠CED表示出來(lái),再利用平行線的性質(zhì)可求得∠AEB+∠CED=90°,可證得結(jié)論.
【考點(diǎn)精析】掌握平行線的性質(zhì)是解答本題的根本,需要知道兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列式計(jì)算:已知三角形的第一條邊長(zhǎng)為5a+3b,第二條邊比第一條邊短2a-b,第三條邊比第二條邊短a-b.
(1)求第二條邊長(zhǎng);
(2)求這個(gè)三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 23表示2×3 B. ﹣32與(﹣3)2互為相反數(shù)
C. (﹣4)2中﹣4是底數(shù),2是冪 D. a3=(﹣a)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】與點(diǎn) P(3,4)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為______;與點(diǎn)Q(-3,4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意有理數(shù)a、b,定義一種新運(yùn)算“⊕”,規(guī)則如下:a⊕b=ab+a﹣b,例如:3⊕2=3×2+3﹣2,則(﹣3)⊕(﹣4)=___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com