【題目】當(dāng)題目條件出現(xiàn)角平分線時(shí),我們往往可以構(gòu)造等腰三角形解決問(wèn)題.如圖1,在△ABC中,∠A=2∠B,CD 平分∠ACB,AD=2,AC=3,求 BC 的長(zhǎng).解決方法:如圖 2,在BC 邊上取點(diǎn) E,使 EC=AC,連接 DE.可得△DEC≌△DAC 且△BDE 是等腰三角形,所以 BC 的長(zhǎng)為 5.試通過(guò)構(gòu)造等腰三角形解決問(wèn)題:如圖 3,△ABC 中,AB=AC,∠A=20°,BD 平分∠ABC,要想求 AD 的長(zhǎng),僅需知道下列哪些線段的長(zhǎng)(BC=a, BD=b, DC=c)
A.a 和 bB.a 和 cC.b 和 cD.a、b 和 c
【答案】A
【解析】
作DE平分∠ADB與AB交于點(diǎn)E,在AD邊上取點(diǎn)F,使,連接EF,通過(guò)證明和、△AEF是等腰三角形,可得和,從而得出我們只需知道線段BC和BD的長(zhǎng)即可求出AD的長(zhǎng).
作DE平分∠ADB與AB交于點(diǎn)E,在AD邊上取點(diǎn)F,使,連接EF
∵AB=AC,∠A=20°
∴
∵BD 平分∠ABC
∴
∵DE平分∠ADB與AB交于點(diǎn)E
∴
在△BDE和△FDE中
∴
∴
∴
∴
∴
∴
∴
∴
在△BCD和△BED中
∴
∴
∴
∴
∴只需知道線段BC和BD的長(zhǎng)即可求出AD的長(zhǎng)
故答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過(guò)點(diǎn) B的直線折疊,使點(diǎn)A落在BC上的點(diǎn)E處,還原后,再沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)A落在BC上的點(diǎn)F處,這樣就可以求出67.5°角的正切值是
A. +1 B. +1 C. 2.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請(qǐng)解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請(qǐng)說(shuō)明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個(gè)動(dòng)點(diǎn),設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問(wèn):當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:長(zhǎng)方形ABCD中,AD=10,AB=4,點(diǎn)Q是BC的中點(diǎn),點(diǎn)P在AD邊上運(yùn)動(dòng),當(dāng)△BPQ是等腰三角形時(shí),AP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,AE⊥BC于點(diǎn)E,點(diǎn)F,G分別是AB,AD的中點(diǎn),連接EF,F(xiàn)G,若∠EFG=90°,則FG的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“作一個(gè)角等于30°”的尺規(guī)作圖過(guò)程.
作法:如圖,(1)作射線AD;
(2)在射線AD上任意取一點(diǎn)O(點(diǎn)O不與點(diǎn)A重合);
(3)以點(diǎn)O為圓心,OA為半徑作⊙O,交射線AD于點(diǎn)B;
(4)以點(diǎn)B為圓心,OB為半徑作弧,交⊙O于點(diǎn)C;
(5)作射線AC.
∠DAC即為所求作的30°角.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,是折線上的一個(gè)動(dòng)點(diǎn),點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),在點(diǎn)的運(yùn)動(dòng)過(guò)程中,使是等腰三角形的共有__________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設(shè)他們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運(yùn)動(dòng)時(shí)間之間的函數(shù)關(guān)系圖象
(1)李越騎車的速度為 米/分鐘;F點(diǎn)的坐標(biāo)為 ;
(2)求李越從乙地騎往甲地時(shí), 與之間的函數(shù)表達(dá)式;
(3)求王明從甲地到乙地時(shí), 與之間的函數(shù)表達(dá)式;
(4)求李越與王明第二次相遇時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線y=2x+2與y軸、x軸分別交于A、B兩點(diǎn),以B為直角頂點(diǎn)在第二象限作等腰Rt△ABC .
(1)求點(diǎn)C的坐標(biāo),并求出直線AC的關(guān)系式.
(2)如圖2,直線CB交y軸于E,在直線CB上取一點(diǎn)D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于M,P(,k)是線段BC上一點(diǎn),在線段BM上是否存在一點(diǎn)N,使△BPN的面積等于△BCM面積的?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com