已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.
【小題1】若點D坐標是(-8,0),求A、B兩點坐標及k的值
【小題2】若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

【小題1】∵D(-8,0),
∴B點的橫坐標為-8,代入y=x中,得y=-2,
∴B點坐標為(-8,-2),
而A、B兩點關(guān)于原點對稱,∴A(8,2),
∴k=8×2=16;      (4分)
【小題2】∵N(0,-n),B是CD的中點,A、B、M、E四點均在雙曲線上,
∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n),
∴S矩形DCNO=2mn=2k,
∴SDBO=mn=k,
∴SOEN=mn=k,
∴S四邊形OBCE=S矩形DCNO-SDBO-SOEN=k,
∴k=4,
由直線y=x及雙曲線y=,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2),
設(shè)直線CM的解析式是y=ax+b,
由C、M兩點在這條直線上,得

解得a=b=,
∴直線CM的解析式是y=x+.(8分)解析:
(1)將D的坐標可得B的橫坐標,代入解析式可得B的坐標,又有A、B兩點關(guān)于原點對稱,易得k的值;
(2)根據(jù)題意B是CD的中點,A、B、M、E四點均在雙曲線上,可得BCD的坐標關(guān)于mn的表達式,進而可以表示出矩形的面積;代入數(shù)據(jù)可得答案。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆江蘇泰興市黃橋初級中學(xué)八年級下期中數(shù)學(xué)試卷(帶解析) 題型:解答題

已知雙曲線  與直線  相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線 上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.
【小題1】若點D坐標是(-8,0),求A、B兩點坐標及k的值.
【小題2】若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.
【小題3】在(2)的條件下,若P為x軸上一點,是否存在△OMP為等腰三角形?若存在,寫出P點坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.
(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值.
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-反比例函數(shù)與一次函數(shù)的圖像(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,﹣n)作NC∥x軸交雙曲線于點E,交BD于點C.

(1)若點D坐標是(﹣8,0),求A、B兩點坐標及k的值.
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鎮(zhèn)江市丹徒區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知雙曲線與直線y=x-相交于點P(a,b),則   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.

(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值.

(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

 

 

查看答案和解析>>

同步練習(xí)冊答案