解:(1)當(dāng)m=2時(shí),x
2-4x+4=0.
∵△=0,方程有兩個(gè)相等的實(shí)數(shù)根.
∴AB=CD,此時(shí)AB∥CD,則該四邊形是平行四邊形;
當(dāng)m>2時(shí),△=m-2>0,
又∵AB+CD=2m>0,
AB•CD=(m-
)
2+
>0,
∴AB≠CD.
該四邊形是梯形.
(2)根據(jù)三角形的中位線定理可以證明:連接梯形的兩條對(duì)角線的中點(diǎn)的線段等于梯形的上下底的差的一半.
則根據(jù)PQ=1,得CD-AB=2.
根據(jù)(1)中的AB+CD和AB•CD的式子得(2m)
2-4(m
2-m+2)=4,
∴m=3.
當(dāng)m=3時(shí),則有x
2-6x+8=0,
∴x=2或x=4,
即AB=2,CD=4.
(3)根據(jù)該梯形是等腰梯形,平移一腰,則得到等邊△BEC.
∴∠BCD=60°,∠BDC=30°.
∵tan∠BDC+tan∠BCD=
,
tan∠BDC•tan∠BCD=1.
∴所求作的方程是y
2-
y+1=0.
分析:(1)根據(jù)當(dāng)m=2和m>2時(shí),方程根的情況來進(jìn)一步判斷AB和CD的數(shù)量關(guān)系,結(jié)合其位置關(guān)系,判斷該四邊形的形狀;
(2)根據(jù)梯形的對(duì)角線的中點(diǎn)所連接的線段等于上下底差的一半,結(jié)合根與系數(shù)的關(guān)系得到關(guān)于m的方程,從而求出方程的兩個(gè)根;
(3)根據(jù)梯形的邊之間的關(guān)系,求得這兩個(gè)角的度數(shù),再根據(jù)特殊角的銳角三角函數(shù)值寫出這個(gè)一元二次方程.
點(diǎn)評(píng):注意平行四邊形的梯形的概念的區(qū)別;能夠證明梯形的對(duì)角線中點(diǎn)所連線段等于上下底差的一半;能夠根據(jù)根與系數(shù)的關(guān)系由已知方程寫出兩根之和,兩根之積.反過來能夠根據(jù)兩根之和,兩根之積寫出一個(gè)方程.