精英家教網(wǎng)如圖,在半徑為1的⊙O中,AB為直徑,C為弧AB的中點(diǎn),D為弧CB的三等分點(diǎn),且弧DB的長(zhǎng)等于弧CD長(zhǎng)的兩倍,連接AD并延長(zhǎng)交⊙O的切線CE于點(diǎn)E(C為切點(diǎn)),則AE的長(zhǎng)為
 
分析:連接OC,過(guò)A作AM⊥EC于M,由CE是圓O的切線,推出AM∥OC,由C為弧AB的中點(diǎn),得到AB=AC,進(jìn)一步推出MA⊥AB,得到矩形AMCO,推出AM=1,由D為弧CB的三等分點(diǎn),求出∠MAE和∠AEM的度數(shù),根據(jù)含30°角的直角三角形的性質(zhì)即可得出答案.
解答:精英家教網(wǎng)解:連接OC,過(guò)A作AM⊥EC于M,
∵CE是圓O的切線,
∴OC⊥CE,
∵AM⊥EC,
∴AM∥OC,
∵C為弧AB的中點(diǎn),
∴∠A=∠B=45°,AC=BC,
∵OA=OB,
∴CO⊥AB,
∴MA⊥AB,
∴四邊形AMCO是矩形,
∴AM=OC=1,
∵D為弧CB的三等分點(diǎn),
∴∠CAD=
1
3
×45°=15°,
∵M(jìn)A⊥AB,OA為半徑,
∴AM為圓O的切線,
∴∠MAC=∠B=45°,
∴∠MAD=15°+45°=60°,
∴∠AEM=180°-60°-90°=30°,
∴AE=2AM=2.
故答案為:2.
點(diǎn)評(píng):本題主要考查了切線的性質(zhì),含30°角的直角三角形,圓心角、弧、弦之間的關(guān)系,矩形的性質(zhì)和判定,三角形的內(nèi)角和定理等知識(shí)點(diǎn),綜合運(yùn)用這些性質(zhì)進(jìn)行證明是解此題的關(guān)鍵.題型較好,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無(wú)數(shù)個(gè),但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個(gè)內(nèi)接正方形,然后作這個(gè)正方形的內(nèi)切圓,又在這個(gè)內(nèi)切圓中作內(nèi)接正方形,依此作到第n個(gè)內(nèi)切圓,它的半徑是(  )
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在半徑為2的⊙O中,弦AB的長(zhǎng)為2
3
,則∠AOB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海模擬)如圖,在半徑為1的扇形AOB中,∠AOB=90°,點(diǎn)P是
AB
上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),PC⊥OA,PD⊥OB,垂足分別為點(diǎn)C、D,點(diǎn)E、F、G、H分別是線段OD、PD、PC、OC的中點(diǎn),EF與DG相交于點(diǎn)M,HG與EC相交于點(diǎn)N,聯(lián)結(jié)MN.如果設(shè)OC=x,MN=y,那么y關(guān)于x的函數(shù)解析式及函數(shù)定義域?yàn)?!--BA-->
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步練習(xí)冊(cè)答案