直角梯形OABC中,BC∥OA,∠OAB=90°,OA=4,腰AB上有一點(diǎn)D,AD=2,四邊形ODBC的面積為6,建立如圖所示的直坐標(biāo)系,反比例函數(shù)y=數(shù)學(xué)公式(x>0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則CB與BD的比值是


  1. A.
    1
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:先設(shè)點(diǎn)C(x,),后由梯形面積得到x的值,又由BC等于4-x,BD等于,從而解得.
解答:解:由題意點(diǎn)D(4,2),
代入雙曲線方程得:m=8,
由題意設(shè)點(diǎn)C(x,),則AB=,BC=4-x,
梯形ABCO的面積==2×4×+6,
==20,
解得:x=,
所以點(diǎn)C(),
所以BC=4-x=,BD==,
所以
故選D.
點(diǎn)評:本題考查了反比例函數(shù)的綜合應(yīng)用,通過設(shè)點(diǎn)C,用點(diǎn)C坐標(biāo)表示BC,BD的長度,通過求梯形面積可以求得x的值,從而解得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,2
3
),∠BCO=60°,OH⊥BC于點(diǎn)H.動點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動,精英家教網(wǎng)動點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動,兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長度.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒.
(1)求OH的長;
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點(diǎn)M.
①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值. 
②探究線段OM長度的最大值是多少,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,CB∥OA,∠OAB=90°,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的精英家教網(wǎng)正半軸上,對角線OB,AC相交于點(diǎn)M,OA=AB=4,OA=2CB.
(1)點(diǎn)C的坐標(biāo)為
 
;
(2)求△OCM的面積;
(3)若點(diǎn)E在過O,A,C三點(diǎn)的拋物線的對稱軸上,點(diǎn)F為該拋物線上的點(diǎn),且以A,O,F(xiàn),E四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

做一做
(1)在直角坐標(biāo)系中描出下列各組點(diǎn),并將各組內(nèi)的點(diǎn)用線段依次連接起來.
精英家教網(wǎng)
(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);
(2)(2,0)、(5,3)、(4,0);
(3)(2,0)、(5,-3)、(4,0).
觀察所得到的圖形像什么?如果要將此圖形向上平移到x軸上方,那么至少要向上平移幾個(gè)單位長度.

(2)如圖,AD是∠EAC的平分線,AD∥BC,∠B=45°,則∠DAC的度數(shù)是多少?
(寫出解答過程)
精英家教網(wǎng)

(3)如圖所示的平面直角坐標(biāo)系,在直角梯形OABC中,CB∥OA,CB=8,OC=8,∠OAB=45°
精英家教網(wǎng)
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)求梯形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)直角梯形OABC中,BC∥OA,∠OAB=90°,OA=4,腰AB上有一點(diǎn)D,AD=2,四邊形ODBC的面積為6,建立如圖所示的直坐標(biāo)系,反比例函數(shù)y=
m
x
(x>0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則CB與BD的比值是(  )
A、1
B、
4
3
C、
6
5
D、
8
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,2
3
),∠BCO=60°,OH⊥BC于點(diǎn)H,動點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動,動點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動,兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長度,設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒.
(1)OH=
2
3
2
3

(2)用含t(秒)的代數(shù)式表示點(diǎn)P和Q的坐標(biāo):P(
0
0
,
t
t
),Q(
3-
3
2
t
3-
3
2
t
,
3
-
1
2
t
3
-
1
2
t
);
(3)若△OPQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系,并求t為何值時(shí),△OPQ的面積最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案