如圖,AB為半圓O的直徑,C是半圓上一點(diǎn),且∠COA=60°,設(shè)扇形AOC、△COB、弓形BmC的面積為S1、S2、S3,則它們之間面積最大的是   
【答案】分析:過(guò)O點(diǎn)作OD⊥BC于D,根據(jù)垂徑定理得到BD=DC,設(shè)⊙O的半徑為R,由∠COA=60°,得∠B=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到OD=R,BD=R,因此可得到S2,根據(jù)扇形的面積公式得到S1,S扇形COB,這樣就能得到S3=S扇形COB-S2,最后比較大小即可得到答案.
解答:解:過(guò)O點(diǎn)作OD⊥BC于D,如圖,設(shè)⊙O的半徑為R,
則BD=DC,
∵∠COA=60°,
∴∠B=30°,
∴OD=R,BD=R,
∴BC=R,
∴S2=R•R=R2,
S1==R2,
S3=-R2=(-)R2,
-
∴S2<S1<S3
故答案為:S3
點(diǎn)評(píng):本題考查了扇形的面積公式:S=;也考查了三角形的面積公式以及含30度的直角三角形三邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,AB為半圓⊙O的直徑,C為半圓上的一點(diǎn).
(1)請(qǐng)你只用直尺和圓規(guī),分別以AC、BC為直徑,向△ABC外側(cè)作半圓.(不必寫(xiě)出作法,只需保留作圖痕跡)
(2)若AC=3,BC=4,求所作的兩個(gè)半圓中不與⊙O重疊的部分的面積和.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有點(diǎn)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
(2)思考驗(yàn)證:如圖,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過(guò)點(diǎn)C作CD⊥AB,垂足精英家教網(wǎng)為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,CB切半圓于點(diǎn)B,AC交半圓于點(diǎn)D,若CD=1,AD=3,則⊙O半徑的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為半圓O的直徑,D、E是半圓上的兩點(diǎn),且BD平分∠ABE,過(guò)點(diǎn)D作BE延長(zhǎng)線(xiàn)的垂線(xiàn),垂足為精英家教網(wǎng)C,直線(xiàn)CD交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:直線(xiàn)CD是半圓O的切線(xiàn);
(2)若FA=2,OA=3,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,B1,B2,…,Bk是半圓上的k個(gè)點(diǎn),滿(mǎn)足BB1=B1B2=…Bk-1Bk,對(duì)于線(xiàn)段OB1,OB2,…,OBk,AB1,AB2,…,ABk,當(dāng)k=4時(shí),有
 
對(duì)互相平行的線(xiàn)段;當(dāng)k取任意大于1的整數(shù)時(shí),試探索這2k條線(xiàn)段中有多少對(duì)互相平行的線(xiàn)段,寫(xiě)出你的結(jié)論:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案