如圖1,△為等腰直角三角形,,邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不重合),以為一邊在等腰直角三角形外作正方形連接.

(1)①猜想圖1中線段、的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;

②將圖1中的正方形繞著點(diǎn)按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度,得到如圖2、圖3的情形. 圖2中于點(diǎn),交于點(diǎn),請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取2證明你的判斷.

(2)將原題中的等腰直角三角形改為直角三角形,,正方形改為矩形,如圖4,且,,于點(diǎn),交于點(diǎn),連接、,求的值.

 


解:(1)①

仍然成立.   證明:∵△是等腰

角三角形,

∵四邊形是正方形

∴△≌△

又∵,

,∴

(2)證明:連接

∵四邊形是矩形 

又∵

,,,

∴△∽△

又∵,

,

,

∵在Rt△中,,,

∵在Rt△中,,,

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道三角形三條中線的交點(diǎn)叫做三角形的重心.經(jīng)過證明我們可得三角形重心具備下面的性質(zhì):重心到頂點(diǎn)的距離與重心到該頂點(diǎn)對(duì)邊中點(diǎn)的距離之比為2﹕1.請(qǐng)你用此性質(zhì)解決下面的問題.
已知:如圖,點(diǎn)O為等腰直角三角形ABC的重心,∠CAB=90°,直線m過點(diǎn)O,過A、B、C三點(diǎn)分別作直線m的垂線,垂足分別為點(diǎn)D、E、F.
(1)當(dāng)直線m與BC平行時(shí)(如圖1),請(qǐng)你猜想線段BE、CF和AD三者之間的數(shù)量關(guān)系并證明;
(2)當(dāng)直線m繞點(diǎn)O旋轉(zhuǎn)到與BC不平行時(shí),分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請(qǐng)給予證明;若不成立,線段AD、BE、CF三者之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,不需證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)小芳同學(xué)在出黑板報(bào)時(shí)畫出了一月牙形的圖案如圖,其中△AOB為等腰直角三角形,以O(shè)為圓心,OA為半徑作扇形OAB,再以AB的中點(diǎn)C為圓心,以AB為直徑作半圓,則月牙形陰影部分的面積S1與△AOB的面積S2之間的大小關(guān)系是( 。
A、S1<S2B、S1=S2C、S1>S2D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•營(yíng)口)如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧營(yíng)口卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.

(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;

②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.

(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圓》好題集(12):24.4 弧長(zhǎng)和扇形面積(解析版) 題型:選擇題

小芳同學(xué)在出黑板報(bào)時(shí)畫出了一月牙形的圖案如圖,其中△AOB為等腰直角三角形,以O(shè)為圓心,OA為半徑作扇形OAB,再以AB的中點(diǎn)C為圓心,以AB為直徑作半圓,則月牙形陰影部分的面積S1與△AOB的面積S2之間的大小關(guān)系是( )

A.S1<S2
B.S1=S2
C.S1>S2
D.無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案