分析 (1)連接OB,根據(jù)已知條件判定△OBC的等邊三角形,則BC=OC=2;
(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.
解答 (1)解:如圖,連接OB.
∵AB⊥OC,∠AOC=60°,
∴∠OAB=30°,
∵OB=OA,
∴∠OBA=∠OAB=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC的等邊三角形,
∴BC=OC.
又OC=2,
∴BC=2;
(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.
∵OC=CP,
∴BC=PC,
∴∠P=∠CBP.
又∵∠OCB=60°,∠OCB=2∠P,
∴∠P=30°,
∴∠OBP=90°,即OB⊥PB.
又∵OB是半徑,
∴PB是⊙O的切線.
點評 本題考查了切線的判定,等邊三角形的判定與性質(zhì).要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
科目:初中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$>-$\frac{4}{3}$ | B. | -(-$\frac{1}{3}$)<-|-$\frac{1}{3}$| | C. | (-2)3<-23 | D. | (-3)2<(-2)3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com