如圖,AB是⊙O的弦,OC⊥AB于點C,若AB=8cm,OC=3cm,則⊙O的半徑為    cm.
【答案】分析:根據(jù)垂徑定理可將AC的長求出,再根據(jù)勾股定理可將⊙O的半徑求出.
解答:解:由垂徑定理OC⊥AB,則AC=BC=AB=4cm
在Rt△ACO中,AC=4,OC=3,
由勾股定理可得AO==5(cm),
即⊙O的半徑為5cm.
點評:本題綜合考查了圓的垂徑定理與勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,AB是⊙O的弦,半徑OC⊥AB于點D,且AB=8m,OC=5m,則DC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的弦,⊙O半徑為5,OC⊥AB于D,交⊙O于C,且CD=2,則AB=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知:如圖,AB是⊙O的弦,半徑OC交弦AB于點P,且AB=10cm,PB=4cm,PC=2cm,則OC的長等于
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的弦,AB=10,⊙O的半徑OC⊥AB于D,如果OD:DC=3:2,那么⊙O的直徑長為
25
2
25
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的弦,OC⊥AB于點C,若AB=4,OC=1,則⊙O的半徑為( 。

查看答案和解析>>

同步練習冊答案