【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長;
(2)求完成這項工程需要土石多少立方米?
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時可以證明△ABD≌△ACF,則
①BC與CF的位置關(guān)系為: ;
②BC,DC,CF之間的數(shù)量關(guān)系為: ;
(2)類比探究
如圖2,當點D在線段BC的延長線上時,其他條件不變,(1)中①,②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側(cè),其他條件不變.
①BC,DC,CF之間的數(shù)量關(guān)系為:
②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC,則OC的長度為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD的對角線AC、BD相交于點O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由點C向點D運動,設(shè)運動時間為t秒。
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,EP與PQ有什么關(guān)系?請說明理由。
(2)若點Q的運動速度與點P的運動速度不相等,則當t為何值時,能使得△EPB與△CQP全等?此時點Q的運動速度為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】其工廠甲.乙兩個部門各有員工人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,過程如下,請補充完整.
收集數(shù)據(jù)
從甲、乙兩個部門各隨機抽取名員工進行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
(1)按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
成績?nèi)藬?shù)部門 | ||||||
甲 | ||||||
乙 |
(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)
(2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時,若取組距為,則這小組的頻數(shù)為 ,頻率為 ;
(3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是 度;
得出結(jié)論:
(4)估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為 ;
(5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為 (說出一條即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩個全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個含60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與AB,AC重合.將三角尺繞點A按逆時針方向旋轉(zhuǎn).
(1)當三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結(jié)論并證明你的結(jié)論;
(2)當三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點E,F時(如圖2),你在(1)中得到的結(jié)論還成立嗎?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),在正方形一邊上取中點,并沿虛線剪開,用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫圖解釋你的判斷.
(2)如圖(2)E為正方形ABCD邊BC的中點,F為DC的中點,BF與AE有何關(guān)系?請解釋你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側(cè)作等腰直角三角形BEF,連接DF,取DF的中點G,連接EG,CG.
(1)如圖1,當點A與點F重合時,猜想EG與CG的數(shù)量關(guān)系為 ,EG與CG的位置關(guān)系為 ,請證明你的結(jié)論.
(2)如圖2,當點F在AB上(不與點A重合)時,(1)中結(jié)論是否仍然成立?請說明理由;如圖3,點F在AB的左側(cè)時,(1)中的結(jié)論是否仍然成立?直接做出判斷,不必說明理由.
(3)在圖2中,若BC=4,BF=3,連接EC,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠為了擴大生產(chǎn),決定購買8臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇,其中甲型機器每日生產(chǎn)零件100個,乙型機器每日生產(chǎn)零件60個,經(jīng)調(diào)查,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠買機器的預(yù)算資金不超過46萬元,那么該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進的8臺機器生產(chǎn)零件的日產(chǎn)量不低于550個,那么為了節(jié)約資金,應(yīng)該選擇哪種方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com