如圖,在矩形ABCD中,AB=4,AD=2,點(diǎn)M是AD的中點(diǎn).點(diǎn)E是邊AB上的一動(dòng)點(diǎn),連接EM并延長交射線CD于點(diǎn)F,過M作EF的垂線交BC的延長線于點(diǎn)G,連接EG,交邊DC于點(diǎn)Q.設(shè)AE的長為x,△EMG的面積為y
(1)求∠MEG的正弦值;
(2)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)線段MG的中點(diǎn)記為點(diǎn)P,連接CP,若△PGC∽△EFQ,求y的值.
【答案】分析:(1)先過點(diǎn)G作GN⊥AD交AD的延長線于點(diǎn)N,可證得△AEM∽△NMG,得出GN的值,再根據(jù)M是AD的中點(diǎn),得出AM=1,即可得出=的比值,從而得出∠MEG的正切值,根據(jù)勾股定理求出EG,即可求出∠MEG的正弦值;
(2)由(1)知,MG=4EM,在Rt△AEM中,得出MG=4,根據(jù)S△EMG=EM•MG,即可求出函數(shù)解析式,并得出x的取值范圍;
(3)先分別過點(diǎn)P、M作PH、MI垂直BG于點(diǎn)H,I,得出BE、IG、BG、CF、CG、CH的值,即可得出EF=PG,∠F=∠PGC,再根據(jù)△PGC∽△EFQ,得出∠QEF=∠CPG即可得出y的值.
解答:解:(1)過點(diǎn)G作GN⊥AD交AD的延長線于點(diǎn)N,可證得△AEM∽△NMG,
=
∴GN=AB=4,
∵M(jìn)是AD的中點(diǎn),
∴AM=1,
==4,
∵GM⊥EF,
∴在Rt△EMG中,
∴tan∠MEG==4;
設(shè)MG=4x,EM=x,在△EMG中,由勾股定理得:EG==x,
∴sin∠MEG===,
即∠MEG的正弦值是;

(2)由(1)知,=4,即MG=4EM,
∵在Rt△AEM中,EM=
∴MG=4,
∵S△EMG=EM•MG,
∴y=2x2+2 (<x≤4);
(3)分別過點(diǎn)P、M作PH、MI垂直BG于點(diǎn)H,I,
∴BE=4-x,IG=4x,
∴BG=4x+1,CF=x+4,CG=4x-1,CH=2x-1,
∴EF=PG,∠F=∠PGC,
∵△PGC∽△EFQ,
∴∠QEF=∠CPG,
則可證:△CPG≌△QEF,
∴QF=CG=4x-1,
∴CQ=CF-QF=5-3x,
可證BE∥CQ,
=,即CG•BE=CQ•BG,
∴(4x-1)(4-x)=(5-3x)(4x+1),
解得:x1=,x2=(舍去),
∴y=;

綜上所述,可知y的值是
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì);解題的關(guān)鍵是根據(jù)矩形的性質(zhì),銳角三角函數(shù)的定義分別進(jìn)行解答,特別是注意第三問有兩種情況,不要漏掉.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( �。�
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案