【題目】如圖,邊長為1的正方形ABCD,點M從點A出發(fā)以每秒1個單位長度的速度向點B運動,點N從點A出發(fā)以每秒3個單位長度的速度沿A→D→C→B的路徑向點B運動,當一個點到達點B時,另一個點也隨之停止運動,設△AMN的面積為s,運動時間為t秒,則能大致反映s與t的函數(shù)關系的圖象是( 。

A.
B.
C.
D.

【答案】D
【解析】解:(1)如圖1,

當點N在AD上運動時,
s=AMAN=×t×3t=t2
(2)如圖2,

當點N在CD上運動時,
s=AMAD=t×1=t.
(3)如圖3,

當點N在BC上運動時,
s=AMBN=×t×(3﹣3t)=﹣t2+t
綜上可得,能大致反映s與t的函數(shù)關系的圖象是選項D中的圖象.
故選:D.
根據(jù)題意,分3種情況:(1)當點N在AD上運動時;(2)當點N在CD上運動時;(3)當點N在BC上運動時;求出△AMN的面積s關于t的解析式,進而判斷出能大致反映s與t的函數(shù)關系的圖象是哪個即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= 的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某糧油超市平時每天都將一定數(shù)量的某些品種的糧食進行包裝以便出售,已知每天包裝大黃米的質(zhì)量是包裝江米質(zhì)量的倍,且每天包裝大黃米和江米的質(zhì)量之和為45千克.
(1)求平均每天包裝大黃米和江米的質(zhì)量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復到原來每天的包裝質(zhì)量.分別求出在這20天內(nèi)每天包裝大黃米和江米的質(zhì)量隨天數(shù)變化的函數(shù)關系式,并寫出自變量的取值范圍.

(3)假設該超市每天都會將當天包裝后的大黃米和江米全部售出,已知大黃米成本價為每千克7.9元,江米成本每千克9.5元,二者包裝費用平均每千克均為0.5元,大黃米售價為每千克10元,江米售價為每千克12元,那么在這20天中有哪幾天銷售大黃米和江米的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=4,∠B=60°,點E是邊AB上的一點,點F是邊CD上一點,將ABCD沿EF折疊,得到四邊形EFGH,點A的對應點為點H,點D的對應點為點G.

(1)當點H與點C重合時.
①填空:點E到CD的距離是___;
②求證:△BCE≌△GCF;
③求△CEF的面積;
(2)當點H落在射線BC上,且CH=1時,直線EH與直線CD交于點M,請直接寫出△MEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.

(1)抽查D廠家的零件為 件,扇形統(tǒng)計圖中D廠家對應的圓心角為;
(2)抽查C廠家的合格零件為 件,并將圖1補充完整;
(3)通過計算說明合格率排在前兩名的是哪兩個廠家;
(4)若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校以“我最喜愛的體育運動”為主題對全校學生進行隨機抽樣調(diào)查,調(diào)查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學僅選一項).根據(jù)調(diào)查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

運動項目

頻數(shù)(人數(shù))

頻率

籃球

30

0.25

羽毛球

m

0.20

乒乓球

36

n

跳繩

18

0.15

其它

12

0.10

請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項的30名學生中,隨機抽取3名學生作為代表進行投籃測試,則其中某位學生被選中的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3

(1)△ABC與△A1B1C1的位似比等于  ;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為  

查看答案和解析>>

同步練習冊答案