兩個(gè)連續(xù)奇數(shù)的平方差一定能( 。
分析:根據(jù)連續(xù)奇數(shù)的性質(zhì),列出算式,利用平方差公式計(jì)算.
解答:解:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n-1(n為整數(shù)),
則(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n,
8n為8的倍數(shù),
故選C.
點(diǎn)評(píng):本題考查了平方差公式的運(yùn)用,構(gòu)造成公式結(jié)構(gòu)是利用公式的關(guān)鍵,需要熟練掌握并靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、請(qǐng)先觀察下列算式,再填空:
32-12=8×1
52-32=8×2
(1)72-52=8×
3

(2)92-(
7
2=8×4
(3)(
11
2-92=8×5
(4)132-(
11
2=8×
6

通過觀察歸納,寫出反映這種規(guī)律的一般結(jié)論:
兩個(gè)連續(xù)奇數(shù)的平方差能被8整除;或是8的倍數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、兩個(gè)連續(xù)奇數(shù)的平方差能被8整除嗎?請(qǐng)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩個(gè)連續(xù)奇數(shù)的平方差一定是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,
那么稱這個(gè)正整數(shù)為“奇特?cái)?shù)”.如:
8=32-12,
16=52-32
24=72-52

因此8,16,24這三個(gè)數(shù)都是奇特?cái)?shù).
(1)56這個(gè)數(shù)是奇特?cái)?shù)嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)奇數(shù)的2n-1和2n+1(其中n取正整數(shù)),由這兩個(gè)連續(xù)奇數(shù)構(gòu)造的奇特?cái)?shù)是8的倍數(shù)嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案