(2005•成都)如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長.

【答案】分析:(1)要證DE是⊙O的切線,只要連接OC,再證∠DCO=90°即可.
(2)已知兩邊長,求其它邊的長,可以來三角形相似,對應(yīng)邊成比例來求.
解答:(1)證明:連接OC;
∵AC平分∠EAB,
∴∠EAC=∠BAC;
又在圓中OA=OC,
∴∠AC0=∠BAC,
∴∠EAC=∠ACO,
∴OC∥AE(內(nèi)錯角相等,兩直線平行);
則由AE⊥DC知OC⊥DC,
即DC是⊙O的切線.

(2)解:∵∠D=∠D,∠E=∠OCD=90°,
∴△DCO∽△DEA,
=,
=,
=
∴BD=2;
∵Rt△EAC∽Rt△CAB,
,

∴AC2=,
由勾股定理得:
BC=
點評:本題考查了切線的判定、相似三角形的性質(zhì)和勾股定理的運用.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2005•成都)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,與x軸交于點C,已知OA=,,點B的坐標(biāo)為
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省成都市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•成都)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,與x軸交于點C,已知OA=,,點B的坐標(biāo)為
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(02)(解析版) 題型:填空題

(2005•成都)如圖所示的是一組數(shù)據(jù)的折線統(tǒng)計圖,這組數(shù)據(jù)的極差是    ,平均數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識初步》(02)(解析版) 題型:選擇題

(2005•成都)如圖,直線AB、CD相交于O,OE⊥AB,那么下列結(jié)論錯誤的是( )

A.∠AOC與∠COE互為余角
B.∠BOD與∠COE互為余角
C.∠COE與∠BOE互為補角
D.∠AOC與∠BOD是對頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省成都市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•成都)如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長.

查看答案和解析>>

同步練習(xí)冊答案