如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉1800,得到矩形OEFG,順次連接AC、CE、EG、GA.

(1)請直接寫出點F的坐標;
(2)試判斷四邊形ACEG的形狀,并說明理由;
(3)將矩形OABC沿y軸向下平移m個單位(0<m<4),設平移過程中矩形與重疊部分面積為,當=11:16時,求m的值.
(1)F(-2,-4);(2)四邊形ACEG是菱形,證明見解析;(3)

試題分析:(1)點F與點B關于原點對稱,故F(-2,-4);
(2)根據(jù)對角線互相垂直平分的四邊形是平行四邊形,即可證得;
(3)根據(jù)=11:16,求得 ,再由,得到△∽△,再用含m的代數(shù)式表示出,從而求出m的值.
試題解析:(1)F(-2,-4);
(2)四邊形ACEG是菱形.
理由:根據(jù)題意得:OA=OE,OC=OG
∴四邊形ACEG是平行四邊形
又∵AE⊥GC
∴四邊形ACEG是菱形;
(3)將矩形OABC沿y軸向下平移m個單位得到矩形.設與AC交于點M,與EC交于點N,則當=11:16時,重疊部分為五邊形.
=11:16
 
,
∴△∽△


 
同理可得: 
 
解得:.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在如圖的方格紙中,每個小方格都是邊長為1個單位的正方形,的三個頂點都在格點上(每個小方格的頂點叫格點).

⑴ 畫出△ABC關于點O的中心對稱的△A1B1C1
⑵ 如果建立平面直角坐標系,使點B的坐標為(-5,2),點C的坐標為(-2,2),則點A1的坐標為          ;
⑶ 將△ABC繞點O順時針旋轉90°,畫出旋轉后的△A2B2C2,并求線段BC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,將四邊形ABCD稱為“基本圖形”,且各點的坐標分別為A(4,4),B(1,3),C(3,3),D(3,1).

(1)畫出“基本圖形”關于原點O對稱的四邊形A1B1C1D1,并求出A1,B1,C1,D1的坐標.
A1(   ,   ),B1(   ,   ),C1(   ,   ),D1(   ,   ) ;
(2)畫出“基本圖形”關于x軸的對稱圖形A2B2C2D2 ;
(3)畫出四邊形A3B3C3D3,使之與前面三個圖形組成的圖形既是中心對稱圖形又是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,草原上兩個居民點A、B在河流L的同旁,一汽車從A出發(fā)到B,途中需要到河邊加水.汽車在哪一點加水,可使行駛的路程最短?在圖上畫出該點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖(1)中,△和△都是等腰直角三角形,∠和∠都是直角,點上,△繞著點經(jīng)過逆時針旋轉后能夠與△重合,再將圖(1)作為“基本圖形”繞著點經(jīng)過逆時針旋轉得到圖(2).兩次旋轉的角度分別為(    )
A.45°,90° B.90°,45°C.60°,30°D.30°,60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

點P關于原點對稱的點Q的坐標是(-1,3),則P的坐標是                    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列圖形中,繞著它的中心點旋轉60°后,可以和原圖形重合的是(    )
A.正三角形B.正方形C.正五邊形D.正六邊形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列平面圖形中,既是軸對稱圖形,又是中心對稱圖形的是

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,將正方形圖案繞中心旋轉后,得到的圖案是(    )

查看答案和解析>>

同步練習冊答案