在數(shù)軸上分別表示有理數(shù)2.5、-2的點(diǎn)A、B,則A、B兩點(diǎn)間的距離為________.

4.5
分析:直接根據(jù)數(shù)軸上兩點(diǎn)間的距離公式求解即可.
解答:∵在數(shù)軸上分別表示有理數(shù)2.5、-2的點(diǎn)A、B,
∴A、B兩點(diǎn)間的距離=|-2-2.5|=4.5.
故答案為:4.5.
點(diǎn)評(píng):本題考查的是數(shù)軸,熟知數(shù)軸上兩點(diǎn)間的距離公式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a-b|.利用數(shù)形結(jié)合思想回答下列問(wèn)題:
①數(shù)軸上表示2和5兩點(diǎn)之間的距離是
3
,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是
4

②數(shù)軸上表示x和-2的兩點(diǎn)之間的距離表示為
|x+2|

③若x表示一個(gè)有理數(shù),且-3<x<1,則|x-1|+|x+3|=
4

④若x表示一個(gè)有理數(shù),且|x-1|+|x+3|>4,則有理數(shù)x的取值范圍是
x>1或x<-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a-b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí)
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=a-b=|a-b|;
綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a-b|
利用上述結(jié)論,請(qǐng)結(jié)合數(shù)軸解答下列問(wèn)題:
(1)數(shù)軸上表示2和-5的兩點(diǎn)之間的距離是
7
7
,數(shù)軸上表示-1和-3的兩點(diǎn)之間的距離是
2
2

(2)若數(shù)軸上有理數(shù)x滿足|x-1|+|x+2|=5,則有理數(shù)x為
2或-3
2或-3

(2)數(shù)軸上表示a和-1的點(diǎn)的距離可表示為|a+1|,表示a和3的點(diǎn)距離表示為|a-3|,當(dāng)|a+1|+|a-3|取最小值時(shí),有理數(shù)a的范圍是
-1≤a≤3
-1≤a≤3
,最小值是
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:我們知道,若點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)間的距離表示為AB.則AB=|a-b|.所以式子|x-3|的幾何意義是數(shù)軸上表示有理數(shù)3的點(diǎn)與表示有理數(shù)x的點(diǎn)之間的距離.根據(jù)上述材料,解答下列問(wèn)題:
(1)若|x-3|=|x+1|,則x=
1
1

(2)式子|x-3|+|x+1|的最小值為
4
4
;
(3)請(qǐng)說(shuō)出|x-3|+|x+1|=7所表示的幾何意義,并求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面材料并填空:
已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a-b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),

(1)如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
(2)如圖3,點(diǎn)A、B在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
(3)如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=a-b=|a-b|.
綜上,數(shù)軸上A、B兩點(diǎn)的距離|AB|=|a-b|.
利用上述結(jié)論,小明同學(xué)這樣解決了以下問(wèn)題:
數(shù)軸上表示x和-1的兩點(diǎn)之間的距離是|x+1|,表示x和2的兩點(diǎn)之間的距離是|x-2|,當(dāng)x的取值范圍為-1≤x≤2時(shí),代數(shù)式|x+1|+|x-2|取最小值3.并且他發(fā)現(xiàn):對(duì)于代數(shù)式|x-a1|+|x-a2|+…+|x-an|,當(dāng)n為奇數(shù)時(shí),把a(bǔ)1,a2,…an從小到大排列,x等于最中間的數(shù)值時(shí),原式值最。划(dāng)n為偶數(shù)時(shí),把a(bǔ)1,a2,…an從小到大排列,x取最中間兩個(gè)數(shù)值之間的數(shù)(包括最中間的兩個(gè)數(shù))時(shí),原式值最。
請(qǐng)你仿照小明的方法解決下面問(wèn)題(也可以考慮其他方法):
若y=|1-x|+|2-3x|+|3-4x|+|4-5x|+|5-6x|+|6-7x|,則當(dāng)x的取值范圍是
3
4
≤x≤
6
7
3
4
≤x≤
6
7
時(shí),y取最小值
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a-b|.
利用數(shù)形結(jié)合思想回答下列問(wèn)題:
(1)如果點(diǎn)A表示數(shù)5,將點(diǎn)A先向左移動(dòng)4個(gè)單位長(zhǎng)度,再向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是
8
8
,A、B兩點(diǎn)間的距離是
3
3
;
(2)數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是
4
4
;
(3)數(shù)軸上表示x和1的兩點(diǎn)之間的距離是
|x-1|
|x-1|
;
(4)若x表示一個(gè)有理數(shù),且|x-1|+|x+3|=4,則x的取值范圍是
-3≤x≤1
-3≤x≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案