如圖,平行四邊形ABCD中 ,BE平分∠ABCAEED=8:3,CD=24,則平行四邊形ABCD的周長為         
114
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠EBC=∠AEB,
∵BE是∠ABC的角平分線,
∴∠EBC=∠AEB=∠ABE,AB=AE
AEED=8:3,CD=24
∴AE=24,ED=9
平行四邊形ABCD的周長=2AB+2(AE+ED)= 2×24+2×(24+9)=114
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,ADBC邊上的中線,四邊形ABDE是平行四邊形
(1)求證:四邊形ADCE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形ADCE是菱形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,點E是AB的中點,延長BC到點F,使CF=AE.現(xiàn)把向左平移,使重合,得于點

小題1:證明:AH⊥DE
小題2:求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

、如圖,一個直角三角形紙片的頂點A在∠MON的邊OM上移動,移動過程中始終保持AB⊥ON于點B,AC⊥OM于點A.∠MON的角平分線OP分別交AB、AC于D、E兩點.
小題1:點A在移動的過程中,線段AD和AE有怎樣的數(shù)量關系,并說明理由.
小題2:點A在移動的過程中,若射線ON上始終存在一點F與點A關于OP所在的直線對稱,判斷并說明以A、D、F、E為頂點的四邊形是怎樣特殊的四邊形?
小題3:若∠MON=45°,猜想線段AC、AD、OC之間有怎樣的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列給出的條件中,能判定四邊形ABCD是平行四邊形的為(    ).
A.AB=BC,AD=CDB.AB=CD,AD∥BC
C.∠A=∠B,∠C=∠DD.AB∥CD,∠A=∠C

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,□ABCD中,E是AD邊的中點,BE的延長線與CD的延長線相交于F.
求證:DC=DF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用同樣規(guī)格的花色和白色兩種正方形地磚鋪設矩形地面,請觀察圖形并解答有關問題:(1)有第n個圖形中,白色地磚總塊數(shù)為           
(2)在第n個圖形中,花色地磚總塊數(shù)為           
(3)是否存在白色地磚與花色地磚數(shù)量相等的情形?若存在求出n的值,若不存在說明理由。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在平行四邊形中,,∠的平分線交于點,則的長為
A.4B.3 C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:如圖1,在四邊形ABCD中,取對角線BD的中點O,連結(jié)OA、OC. 顯然,折線AOC能平分四邊形ABCD的面積,再過點OOEACCDE,則直線AE即為一條“好線”.

(1)試說明直線AE是“好線”的理由;
(2)如圖2,AE為一條“好線”,FAD邊上的一點,請作出經(jīng)過F點的“好線”,只需對畫圖步驟作適當說明(不需要說明“好線”的理由).

查看答案和解析>>

同步練習冊答案