如圖,已知AB是⊙O的直徑,點CD在⊙O上,點E在⊙O外,∠EAC=∠D=60°.

(1)求∠ABC的度數(shù);

(2)求證:AE是⊙O的切線;

(3)當BC=4時,求劣弧AC的長.

解:(1)∵∠ABC與∠D都是弧AC所對的圓周角 ∴∠ABC=∠D =60°

(2)∵AB是⊙O的直徑    ∴∠ACB=90° 

∴∠BAC=30°∴∠BAE =∠BAC+∠EAC=30°+60°=90°

BAAE

     ∴AE是⊙O的切線  

(3) 如圖,連結(jié)OC

OB=OC,∠ABC=60°∴△OBC是等邊三角形

OB=BC=4 , ∠BOC=60°

∴∠AOC=120°

∴劣弧AC的長為 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案