精英家教網(wǎng)如圖,OC是∠AOB的平分線,點P是OC上一點,過點P作PD∥OA交OB于點D,若∠AOB=60°,OD=6cm,求OP的長.
分析:要求OP,尋找與已知線段OD的聯(lián)系,發(fā)現(xiàn)它們在同一個三角形中,并且此三角形是等腰三角形,已知底角和腰長,求底邊.
解答:解:
∵∠AOB=60°,OC平分∠BOA,
∴∠AOC=∠BOC=
1
2
∠AOB=30°.
∵PD∥OA,
∴∠DPO=∠AOC=30°,∴DP=DO.
過點D作DE⊥OP于E,則OE=
1
2
OP.
在Rt△DOE中,OE=ODcos∠DOE=6×cos30°=
3
2
=3
3

∴OP=6
3

即OP的長為6
3
cm.
點評:解題關(guān)鍵是尋找已知和未知之間的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OC是∠AOB的角平分線,P是OC上一點,PD⊥OA交于點D,PE⊥OB交于點E,F(xiàn)是OC上除點P、O外一點,連接DF、EF,則DF與EF的關(guān)系如何?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,OC是∠AOB的平分線,點D是OC上的一點,DE⊥OA于點E,DF⊥OB于點F,連接EF,交OC于點P,把這個圖形沿OC對折后觀察,除∠AOC=∠BOC外,你還可以發(fā)現(xiàn)的結(jié)論是
答案不惟一,如DE=DF,PE=PF,OE=OF,EF⊥OC,∠EDO=∠FDO,∠DEF=∠DFE等
(至少寫出三個).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)畫出下圖的三視圖.
(2)如圖射線OC是∠AOB的角平分線,M是OC上任意一點.
①畫MP⊥OA,垂足為P;
②畫MQ⊥OB,垂足為Q;
③度量點M到OA、OB的距離,你發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,OC是∠AOB的平分線,且∠AOD=90°.
(1)圖中∠COD的余角是
∠AOC,∠BOC
;
(2)如果∠COD=24°45′,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,OC是∠AOB的平分線,OD是∠BOC的平分線,那么下列各式中正確的是( 。
A、∠COD=
1
2
∠AOB
B、∠AOD=
2
3
∠AOB
C、∠BOD=
1
2
∠AOD
D、∠BOC=
2
3
∠AOD

查看答案和解析>>

同步練習(xí)冊答案