如圖,梯形ABCD中,ADBC,AD=5,且DEAB交BC于點(diǎn)E,梯形的周長為30,則△DEC的周長為(  )
A.19B.20C.25D.15

∵ADBC,DEAB,
∴四邊形ABED是平行四邊形,
∴AD=BE=5,BA=DE,
∵梯形ABCD的周長=AB+BC+CD+AD,
△DEC的周長=DE+CE+CD=AB+BC-BE+CD,
∴△DEC的周長=梯形ABCD的周長-AD-BE=30-5-5=20.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形的腰長為5cm,上、下底的長分別為6cm和12cm,則它的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中AB=CD、AC=3,則BD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在梯形ABCD中,ADBC,AD=6,BC=11,CD=5,∠B=50°,則∠D為( 。
A.100°B.115°C.120°D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,AD=4,DC=5,BC=11,梯形的高為4,動(dòng)點(diǎn)M從B點(diǎn)出發(fā)沿線段BC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿CDA以每秒2單位長度的速度向終點(diǎn)A運(yùn)動(dòng).若M,N兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)t為何值時(shí),四邊形ABMN為平行四邊形;
(2)t為何值時(shí),四邊形CDNM為等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在等腰梯形ABCD中,ADBC,直線MN是梯形的對(duì)稱軸,P是MN上的一點(diǎn).直線BP交直線DC于F,交CE于E,且CEAB.
(1)若點(diǎn)P在梯形的內(nèi)部,如圖①.求證:BP2=PE•PF;
(2)若點(diǎn)P在梯形的外部,如圖②,那么(1)的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,ADBC,∠A=120°,AD=8,BC=14,則梯形的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,ADBC.AB=DC=AD=6,∠ABC=60°,點(diǎn)E、F分別在AD、DC上(點(diǎn)E與A、D不重合);且∠BEF=120°,設(shè)AE=x,DF=y.
(1)求BC邊的長;
(2)求出y關(guān)于x的函數(shù)關(guān)系;
(3)利用配方法求x為何值時(shí),y有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在梯形ABCD中,ADBC,AB=CD,BC=8,∠B=60°,點(diǎn)M是邊BC的中點(diǎn),點(diǎn)E、F分別是邊AB、CD上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A、B不重合,點(diǎn)F與點(diǎn)C、D不重合),且∠EMF=120°.
(1)求證:ME=MF;
(2)試判斷當(dāng)點(diǎn)E、F分別在邊AB、CD上移動(dòng)時(shí),五邊形AEMFD的面積的大小是否會(huì)改變,請(qǐng)證明你的結(jié)論;
(3)如果點(diǎn)E、F恰好是邊AB、CD的中點(diǎn),求邊AD的長.

查看答案和解析>>

同步練習(xí)冊答案