作業(yè)寶如圖,AC=BD,∠C=∠D=90°.求證:AD=BC.

證明:
連接AB,
∵∠C=∠D=90°,
∴△ADB和△BCA是直角三角形,
在Rt△ADB和Rt△BCA中,
,
∴Rt△ADB≌Rt△BCA(HL),
∴AD=BC.
分析:連接AB,根據(jù)HL推出Rt△ADB≌Rt△BCA即可.
點評:本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的對應(yīng)邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

15、如圖,AC=BD,要使△ABC≌△DCB,只要添加一個條件
AB=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金臺區(qū)一模)如圖,AC∥BD,AE平分∠BAC交BD于點E.若∠1=68°,則∠2=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,AC=BD,AD⊥AC,BD⊥BC,求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC∥BD,∠A=60°,∠C=62°,則∠2=
60°
60°
,∠3=
62°
62°
,∠1=
58°
58°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.
(1)判斷∠M,∠A,∠B的關(guān)系;
(2)請你嘗試改變問題中的某些條件,探索相應(yīng)的結(jié)論.
建議:①折線中折線段數(shù)量增加到n條(n=3,4,…);
②可如圖①,圖②,或M點在平行線外側(cè).

查看答案和解析>>

同步練習冊答案