如圖所示,圖中函數(shù)的解析式為________.


分析:設(shè)一次函數(shù)解析式為y=kx+b(k≠0),再根據(jù)圖象經(jīng)過(0,1)和(-2,0),利用待定系數(shù)法把點的坐標(biāo)代入設(shè)的函數(shù)解析式中,算出k、b的值,進而得到解析式.
解答:設(shè)一次函數(shù)解析式為y=kx+b(k≠0),
∵圖象經(jīng)過(0,1)和(-2,0),

解得,
∴一次函數(shù)解析式為:y=x+1,
故答案為:y=x+1.
點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式,關(guān)鍵是掌握待定系數(shù)法求一次函數(shù)解析式一般步驟是:
(1)先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時,先設(shè)y=kx+b;
(2)將自變量x的值及與它對應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;
(3)解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,圖中函數(shù)的解析式為
y=
1
2
x+1
y=
1
2
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工程隊做一項工作,工作時間x(天)和完成工作的百分比y的關(guān)系如圖所示,其中線段OA所在直線的函數(shù)關(guān)系式是數(shù)學(xué)公式.工作3天后,該工程隊提高了工作效率,結(jié)果提前完成了此項工程.
(1)圖中a的值是______;
(2)求該工程隊實際完成此項工程所用天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖北省宜昌市中考數(shù)學(xué)調(diào)研試卷(4月份)(解析版) 題型:解答題

某工程隊做一項工作,工作時間x(天)和完成工作的百分比y的關(guān)系如圖所示,其中線段OA所在直線的函數(shù)關(guān)系式是.工作3天后,該工程隊提高了工作效率,結(jié)果提前完成了此項工程.
(1)圖中a的值是______;
(2)求該工程隊實際完成此項工程所用天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(48):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它每秒1個單位長的速度由起始位置向外擴大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴大為8×8;再經(jīng)過一秒,由8×8擴大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴大、再縮小.
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當(dāng)點Q與點B重合時,再向上平移,當(dāng)點M與點C重合時,再向右平移,當(dāng)點N與點D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設(shè)運動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

同步練習(xí)冊答案