【題目】中,,以為直徑的交于,交于,交于,點(diǎn)為延長線上的一點(diǎn),延長交于,.小華得出個(gè)結(jié)論:①;②;③.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
【答案】D
【解析】
首先連接OE,CE,由OE=OD,PE=PF,易得∠OED+∠PEF=∠ODE+∠PFE,又由OD⊥BC,可得OE⊥PE,繼而證得PE為⊙O的切線;
又由BC是直徑,可得CE⊥AB,由切線長定理可得GC=GE,根據(jù)等角的余角相等,可得∠A=∠AEG,根據(jù)等腰三角形的判定,可得答案;
易證得OG是△ABC的中位線,則可得OG∥BE.
連接OE,CE.
∵OE=OD,PE=PF,∴∠OED=∠ODE,∠PEF=∠PFE.
∵OD⊥BC,∴∠ODE+∠OFD=90°.
∵∠OFD=∠PFE,∴∠OED+∠PEF=90°,即OE⊥PE.
∵點(diǎn)E在⊙O上,∴GE為⊙O的切線;
點(diǎn)C在⊙O上,OC⊥GC,∴GC為⊙O的切線,∴GC=GE.
故①正確;
∵BC是直徑,∴∠BEC=90°,∴∠AEC=90°.
∵∠ACB=90°,∴AC是⊙O的切線,∴EG=CG,∴∠GCE=∠GEC.
∵∠GCE+∠A=90°,∠GEC+∠AEG=90°,∴∠A=∠AEG,∴AG=EG;故②正確;
∵OC=OB,AG=CG,∴OG是△ABC的中位線,∴OG∥AB;故③正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,過點(diǎn)C作CD∥AB,且CD=AB,連接BD交AC于點(diǎn)O.
(1)如圖1,求證:AC垂直平分BD;
(2)如圖2,點(diǎn)M在BC的延長線上,點(diǎn)N在線段CO上,且ND=NM,連接BN.求證:NB=NM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)3×3的正方形網(wǎng)格,其右下角格點(diǎn)(小正方形的頂點(diǎn))A的坐標(biāo)為(﹣1,1),左上角格點(diǎn)B的坐標(biāo)為(﹣4,4),若分布在過定點(diǎn)(﹣1,0)的直線y=﹣k(x+1)兩側(cè)的格點(diǎn)數(shù)相同,則k的取值可以是( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程①和一元二次方程②中,m為常數(shù),方程①的根為非負(fù)數(shù).
(1)求m的取值范圍;
(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,⊙O過AC的中點(diǎn)D,DE⊥BC,垂足為E.
(1)由這些條件,你能得出哪些結(jié)論?(要求:不準(zhǔn)標(biāo)其他字母,找結(jié)論過程中所連的輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程,寫出4個(gè)結(jié)論即可)
(2)若∠ABC為直角,其他條件不變,除上述結(jié)論外你還能推出哪些新的正確結(jié)論?并畫出圖形.(要求:寫出6個(gè)結(jié)論即可,其他要求同(1))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的周長為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。
A. B. 2 C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB于點(diǎn)H.
(1)求證:四邊形AGPH是矩形;
(2)在點(diǎn)P的運(yùn)動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?
(3)計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com