【題目】如圖,E是矩形ABCD的邊CB的中點,AF⊥DE于點F,AB=3,AD=4.求點A到直線DE的距離.
【答案】解:∵四邊形ABCD是矩形, ∴∠ADC=∠C=90°,CD=AB=3,BC=AD=4,
∵E是矩形ABCD的邊CB的中點,
∴CE=2,
∴DE= = = ,
∵AF⊥DE,
∴∠AFD=∠C=90°,
∴∠DAF+∠ADF=∠ADF+∠CDE=90°,
∴∠DAF=∠CDE,
∴△ADF∽△DCE,
∴ ,即 = ,
∴AF=
【解析】由四邊形ABCD 是矩形,得到∠ADC=∠C=90°,CD=AB=3,BC=AD=2,根據(jù)勾股定理得到DE= ,通過△ADF∽△DCE,得到 ,列方程即可得到結(jié)果.
【考點精析】利用矩形的性質(zhì)和相似三角形的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)計算:
(1)3·(x4)6-2(x5·x3)3+x11·x13+x20·x3·x;
(2)(-4×103)2×(-2×103)2;
(3) 100×99×100;
(4) 2 015·(x2)2 015-(-0.125)3×29+(-0.25)2 014×42 014;
(5)162m÷42n÷4m×43m-3n+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通管理條例》規(guī)定:小汽車在城街路上行駛速度不得超過70 km/h,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面車速檢測儀 A的正前方60 m處的C點,過了5 s后,測得小汽車所在的B點與車速檢測儀A之間的距離為100 m.
(1)求B,C間的距離.
(2)這輛小汽車超速了嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的兩條角平分線BD、CE交于O,且∠A=60°,則下列結(jié)論中不正確的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當(dāng)EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l及其兩側(cè)兩點A、B.
(1)在直線l上求一點O,使到A、B兩點距離之和最短;
(2)在直線l上求一點P,使PA=PB;
(3)在直線l上求一點Q,使l平分∠AQB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國逐步完善養(yǎng)老金保險制度,甲、乙兩人計劃用相同的年數(shù)分別繳納養(yǎng)老保險金15萬元和10萬元,甲計劃比乙每年多繳納養(yǎng)老保險金0.2萬元.求甲、乙兩人計劃每年分別繳納養(yǎng)老保險金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,P為矩形邊上的一個動點,運動路線是A→B→C→D→A,設(shè)P點經(jīng)過的路程為x,以A,P,B為頂點的三角形面積為y,則選項圖象能大致反映y與x的函數(shù)關(guān)系的是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com