分析 (1)根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠A=∠DCE,根據(jù)等腰三角形的性質(zhì)得到∠DCE=∠DEC,等量代換證明結(jié)論;
(2)根據(jù)垂徑定理得到OE是CD的垂直平分線,根據(jù)題意證明△DEC為等邊三角形,證明結(jié)論.
解答 證明:(1)∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠A=∠DCE,
∵DC=DE,
∴∠DCE=∠DEC,
∴∠A=∠AEB;
(2)∵DC⊥OE,
∴DF=CF,
∴OE是CD的垂直平分線,
∴ED=EC,又DE=DC,
∴△DEC為等邊三角形,
∴∠AEB=60°,又∠A=∠AEB,
∴△ABE是等邊三角形.
點(diǎn)評(píng) 本題考查的是圓內(nèi)接四邊形的性質(zhì)和垂徑定理的應(yīng)用,掌握?qǐng)A內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 19 | C. | 20 | D. | 21 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com