如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6,E、F是BC的三等分點,過點C、E、F分別作AB的垂線,垂足分別為D、G、H,連接AE、AF,分別交CD、EG于M、N,記△CME的面積為S1,△ENF的面積為S2,△FHB的面積為S3,則的值是   
【答案】分析:根據(jù)題意可以求出CD、EG、FH的長,△FHB是等腰直角三角形,面積容易得到,△CME與△ENF中EN,CM邊上的高都等于BH的長.
根據(jù)相似三角形的性質(zhì)就可以求出EN、CM的長.就可以求出兩個三角形的面積.
解答:解:BF=EF=CE=2,△BFH是等腰直角三角形,因而BH=2×=,
S3=1,根據(jù)CD∥EG∥FH,BF=EF=CE,
則△CME與△ENF中,EN、CM邊上的高都等于BH=,
△BCD是等腰直角三角形,
因而CD=6×=3,
根據(jù)==,
因而EG=CD=2=,
則MD=EG=,
則CM=
△CME的面積S1=×CM×=,
同理S2=
因而的值是
點評:本題主要考查了相似三角形的性質(zhì),相似三角形的對應(yīng)邊的比相等.善于發(fā)現(xiàn)題目中的相似三角形是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案