如圖,BD⊥AC于D點(diǎn),F(xiàn)G⊥AC于G點(diǎn),∠CBE+∠BED=180°.

(1)求證:FG∥BD;
(2)求證:∠CFG=∠BDE.

(1)根據(jù)BD⊥AC, FG⊥AC即可證得結(jié)論;(2)由∠CBE+∠BED=180°可證得BC∥DE,即可得到∠CBD=∠BDE,由FG∥BD可證得∠CFG=∠CBD,從而可以證得結(jié)論.

解析試題分析:(1)∵BD⊥AC, FG⊥AC
∴FG∥BD;
(2)∵∠CBE+∠BED=180°
∴BC∥DE
∴∠CBD=∠BDE
∵FG∥BD
∴∠CFG=∠CBD
∴∠CFG=∠BDE.
考點(diǎn):平行線的判定和性質(zhì)
點(diǎn)評(píng):平行線的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD⊥AC于D,GF⊥AC于F,∠1=∠2,那么ED與BC的位置關(guān)系是
平行
平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD⊥AC于D,DE⊥BC于E,若DE=9cm,AB=12cm,不考慮點(diǎn)與點(diǎn)重合的情況,則線段BD的取值范圍是
9cm<DB<12cm
9cm<DB<12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省泰州市姜堰區(qū)四校八年級(jí)下學(xué)期第三次聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,BD⊥AC于D點(diǎn),F(xiàn)G⊥AC于G點(diǎn),∠CBE+∠BED=180°.

⑴求證:FG∥BD;
⑵求證:∠CFG=∠BDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇興化市八年級(jí)下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,BD⊥AC于D點(diǎn),F(xiàn)G⊥AC于G點(diǎn),∠CBE+∠BED=180°.

(1)求證:FG∥BD;

(2)求證:∠CFG=∠BDE.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案