【題目】在橫線上完成下面的證明,并在括號(hào)內(nèi)注明理由.

已知:如圖,∠ABC+BGD180°,∠1=∠2

求證:EFDB

證明:∵∠ABC+BGD180°,(已知)

   .(   

∴∠1=∠3.(   

又∵∠1=∠2,(已知)

   .(   

EFDB.(   

【答案】DGAB;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;∠2=∠3;等量代換;同位角相等,兩直線平行.

【解析】

根據(jù)平行線的性質(zhì)以及判定定理即可填空得出答案.

證明:∵∠ABC+BGD180°,(已知)

DGAB(同旁內(nèi)角互補(bǔ),兩直線平行),

∴∠1=∠3(兩直線平行,內(nèi)錯(cuò)角相等),

又∵∠1=∠2(已知),

∴∠2=∠3(等量代換),

EFDB(同位角相等,兩直線平行 ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,在斜邊AB上分別截取AD=AC,BE=BC,DE=6,
點(diǎn)O是△CDE的外心,如圖所示,則點(diǎn)O到△ABC的三邊的距離之和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C.

(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別BC,CD邊上的一點(diǎn),且BE2ECFCDC,連接AE,AF,EF,求證:△AEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一張矩形紙片ABCD,AB4,BC8,點(diǎn)M,N分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點(diǎn)C落在矩形的邊AD上,記為點(diǎn)P,點(diǎn)D落在G處,連接PC,交MN于點(diǎn)Q,連接CM

1)求證:四邊形CMPN是菱形;

2)當(dāng)PA重合時(shí),如圖2,求MN的長;

3)設(shè)△PQM的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )

A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的視力情況,隨機(jī)抽樣調(diào)查了部分九年級(jí)學(xué)生的視力,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

分組

視力

人數(shù)

A

3.95x4.25

3

B

4.25x4.55

   

C

4.55x4.85

18

D

4.85x5.15

8

E

5.15x5.45

   

根據(jù)以上信息,解谷下列問題:

1)在被調(diào)查學(xué)生中,視力在3.95x4.25范圍內(nèi)的人數(shù)為   人;

2)本次調(diào)查的樣本容量是   ,視力在5.15x5.45范圍內(nèi)學(xué)生數(shù)占被調(diào)查學(xué)生數(shù)的百分比是   %;

3)在統(tǒng)計(jì)圖中,C組對(duì)應(yīng)扇形的圓心角度數(shù)為   °;

4)若該校九年級(jí)有400名學(xué)生,估計(jì)視力超過4.85的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,點(diǎn)DBC邊上,點(diǎn)EAC的延長線上,DE=DA(如圖1)

(1)求證:∠BAD=EDC;

(2)若點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為M(如圖2),連接DM,AM.求證:DA=AM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】豎直上拋的小球離地高度是它運(yùn)動(dòng)時(shí)間的二次函數(shù),小軍相隔1秒依次豎直向上拋出兩個(gè)小球,假設(shè)兩個(gè)小球離手時(shí)離地高度相同,在各自拋出后1.1秒時(shí)到達(dá)相同的最大離地高度,第一個(gè)小球拋出后t秒時(shí)在空中與第二個(gè)小球的離地高度相同,則t=

查看答案和解析>>

同步練習(xí)冊(cè)答案