如圖已知二次函數(shù)圖象的頂點(diǎn)為原點(diǎn), 直線的圖象與該二次函數(shù)的圖象交于點(diǎn)(8,8),直線與軸的交點(diǎn)為C,與y軸的交點(diǎn)為B

(1)求這個二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)為線段上的一個動點(diǎn)(點(diǎn)不重合),過軸的垂線與這個二次函數(shù)的圖象交于D點(diǎn),與軸交于點(diǎn)E.設(shè)線段PD的長為,點(diǎn)的橫坐標(biāo)為t,求t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段上是否存在點(diǎn),使得以點(diǎn)P、D、B為頂點(diǎn)的三角形與相似?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖D、E分別是的AB、 AC邊上點(diǎn),S△ADE∶S四邊形DECB=1∶8那么AE∶AC等于(   )
A.1∶9       B.1∶3      C.1∶8       D.1∶2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)E是弧AC的中點(diǎn),連接EB,CA交于點(diǎn)F,則=( 。
A.B.C.1﹣D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分11分)已知直線軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)

(1)求的值和點(diǎn)A的坐標(biāo);
(2)在矩形OACB中,點(diǎn)P是線段BC上的一動點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。
①求的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長為2.4時點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖△ABC中,為直角,,, DB =     , CD =  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知Rt△ABC中,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,連結(jié)BD。(12分)

(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點(diǎn)E,連結(jié)DE,求證:ED與⊙O相切。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,CD⊥AB于D,E為BC中點(diǎn),延長AC、DE相交于點(diǎn)F,
求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,若DEBC,AD=5,BD=10,DE=4,則BC的值為
A.8B.9 C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料,解答問題。(12分)
已知:銳角,如圖,求作:正方形DEFG,使D、E落在BC邊上,F(xiàn)、G分別落在AC、AB邊上。
作法:(1)畫一個有三個頂點(diǎn)落在兩邊上的正方形D1、E1、F1、G1
(如圖所示);
(2)連結(jié)BF,并延長交AC于點(diǎn)F;
(3)過點(diǎn)F作EF⊥BC于點(diǎn)E;
(4)過F作FG//BC,交AB于點(diǎn)G;
(5)過點(diǎn)G作GD⊥BC于點(diǎn)D;則四邊形DEFG即為所求作的正方形。
問題:(1)說明上述所求作四邊形DEFG為正方形的理由。
(2)在中,如果BC=120,BC邊上的高為80,求上述正方形DEFG的邊長。
(3)若把(2)中的正方形DEFG改為矩形DEFG,且GF=   DG,其他條件不變,此時,GF是多少?

查看答案和解析>>

同步練習(xí)冊答案