(2012•廣安)如圖,2012年4月10日,中國(guó)漁民在中國(guó)南海黃巖島附近捕魚作業(yè),中國(guó)海監(jiān)船在A地偵查發(fā)現(xiàn),在南偏東60°方向的B地,有一艘某國(guó)軍艦正以每小時(shí)13海里的速度向正西方向的C地行駛,企圖抓捕正在C地捕魚的中國(guó)漁民,此時(shí),C地位于中國(guó)海監(jiān)船的南偏東45°方向的10海里處,中國(guó)海監(jiān)船以每小時(shí)30海里的速度趕往C地救援我國(guó)漁民,能不能及時(shí)趕到?(
2
≈1.41,
3
≈1.73,
6
=2.45).
分析:過點(diǎn)A作AD⊥BC的延長(zhǎng)線于點(diǎn)D,則△ACD是等腰直角三角形,根據(jù)AC=10海里可求出AD即CD的長(zhǎng),在Rt△ABD中利用銳角三角函數(shù)的定義求出BD的長(zhǎng)進(jìn)而可得出BC的長(zhǎng),再根據(jù)中國(guó)海監(jiān)船以每小時(shí)30海里的速度航行,國(guó)軍艦正以每小時(shí)13海里的速度即可得出兩軍艦到達(dá)C點(diǎn)所用的時(shí)間,進(jìn)而得出結(jié)論.
解答:解:過點(diǎn)A作AD⊥BC的延長(zhǎng)線于點(diǎn)D,
∵∠CAD=45°,AC=10海里,
∴△ACD是等腰直角三角形,
∴AD=CD=
AC2
2
=
102
2
=5
2
(海里),
在Rt△ABD中,
∵∠DAB=60°,
∴BD=AD•tan60°=5
2
×
3
=5
6
(海里),
∴BC=BD-CD=(5
6
-5
2
)海里,
∵中國(guó)海監(jiān)船以每小時(shí)30海里的速度航行,某國(guó)軍艦正以每小時(shí)13海里的速度航行,
∴海監(jiān)船到達(dá)C點(diǎn)所用的時(shí)間t=
AC
30
=
10
30
=
1
3
(小時(shí));
某國(guó)軍艦到達(dá)C點(diǎn)所用的時(shí)間i=
BC
13
=
5(
6
-
2
)
13
5(2.45-1.41)
13
=0.4(小時(shí)),
1
3
<0.4,
∴中國(guó)海監(jiān)船能及時(shí)趕到.
點(diǎn)評(píng):本題考查的是解直角三角形的應(yīng)用-方向角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用直角三角形的性質(zhì)求解是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)如圖是一個(gè)正方體的表面展開圖,則原正方體中與“建”字所在的面相對(duì)的面上標(biāo)的字是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)如圖,把拋物線y=
1
2
x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(-6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=
1
2
x2交于點(diǎn)Q,則圖中陰影部分的面積為
27
2
27
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)如圖,已知雙曲線y=
k
x
和直線y=mx+n交于點(diǎn)A和B,B點(diǎn)的坐標(biāo)是(2,-3),AC垂直y軸于點(diǎn)C,AC=
3
2

(1)求雙曲線和和直線的解析式.
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)如圖,某水庫(kù)堤壩橫斷面迎水坡AB的坡比是1
3
,堤壩高BC=50m,則迎水坡面AB的長(zhǎng)度是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案