【題目】如圖,等邊的頂點,頂點軸上.

(1)寫出、兩點的坐標(biāo);

(2)的面積和周長.

【答案】1B04 C0,-4);(2,24

【解析】

1)由等邊三角形的性質(zhì)可知原點是BC的中點,AB=2BO,在Rt△AOB中,由勾股定理可求得BO,OC的長,從而得出B,C的坐標(biāo);
2)根據(jù)B、C的坐標(biāo)求得等邊三角形ABC的邊長,然后根據(jù)面積公式和周長公式即可求得結(jié)果.

解:(1)∵△ABC是等邊三角形,軸⊥軸,

∴∠BAO=30°,BO=OC

∴AB=2BO.

Rt△AOB中,由勾股定理得,

又∵A),∴AO=,

,

∴BO=4,∴OC=OB=4.

BC的坐標(biāo)分別為B04),C0-4);

2)由(1)得B0,4),C0,-4),

∴BC=8,

==;

.

的面積為,周長為24.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x+2向下平移1個單位后,得到直線l2,l2x軸于點A,點P是直線l1上一動點,過點PPQy軸交l2于點Q

1)求出點A的坐標(biāo);

2)連接AP,當(dāng)△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標(biāo);

3)點BOA的中點,連接OQBQ,若點Py軸的左側(cè),M為直線y=﹣1上一動點,當(dāng)△PQM與△BOQ全等時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)解應(yīng)用題:2019112-4日,江西省中小學(xué)生研學(xué)實踐教育推進會和全國中小學(xué)綜合實踐活動(研學(xué)實踐教育)論壇相繼在撫州舉行.為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進書本知識和生活經(jīng)驗的深度融合,撫州市某中學(xué)決定組織部分班級去仙蓋山開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校八年級學(xué)生參加體育鍛煉的情況,隨機調(diào)查了該校部分學(xué)生每周參加體育鍛煉的時間,并進行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.

1)本次共調(diào)查學(xué)生 人;

2)這組數(shù)據(jù)的眾數(shù)是 ;

3)請你將圖2的統(tǒng)計圖補充完整;

4)若該校八年級共有650人,請根據(jù)樣本數(shù)據(jù),估計每周參加體育鍛煉時間為6小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)CD與一次函數(shù)AB,都經(jīng)過點B-1,4.

1)求兩條直線的解析式;

2)求四邊形ABDO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為的正方形放在平面直角坐標(biāo)系第二象限,使邊落在軸負半軸上,且點的坐標(biāo)是

(1)直線經(jīng)過點,且與軸交于點,求四邊形的面積;

(2)若直線經(jīng)過點,且將正方形分成面積相等的兩部分,求直線的解析式;

(3)若直線經(jīng)過點且與直線平行.將(2)中直線沿著軸向上平移個單位,軸于點,交直線于點,的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是關(guān)于的方程的兩實根,實數(shù)、、、的大小關(guān)系可能是(

A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點,與軸交于點C,點O為坐標(biāo)原點,點D為拋物線的頂點,點E在拋物線上,點Fx軸上,四邊形OCEF為矩形,且OF=2,EF=3.

(1)求拋物線所對應(yīng)的函數(shù)解析式.

(2)若點P為拋物線對稱軸上的一個動點,求PAC周長的最小值.

(3)將AOC繞點C逆時針旋轉(zhuǎn)90°,點A對應(yīng)點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,為直線上一點,為直線外一點,連結(jié).

1)用直尺、圓規(guī)在直線上作點,使為等腰三角形(作出所有符合條件的點,保留痕跡).

2)設(shè),若(1)中符合條件的點只有兩點,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案