【題目】如圖,在矩形中,,,點從點出發(fā)向點運動,運動到點停止,同時,點從點出發(fā)向點運動,運動到點即停止,點的速度都是每秒1個單位,連接、.設(shè)點運動的時間為

(1)當為何值時,四邊形是矩形;

(2)當時,判斷四邊形的形狀,并說明理由;

【答案】1;(2)當時,四邊形為菱形,理由見解析.

【解析】

1)由矩形性質(zhì)得出,由已知可得,,,當時,四邊形為矩形,得出方程,解方程即可;

2時,,,得出,,,四邊形為平行四邊形,在中,與勾股定理求出,得出,即可得出結(jié)論.

解:(1在矩形中,,,

,,

由已知可得,,,

在矩形中,,,

時,四邊形為矩形,

,

解得:

時,四邊形為矩形;

2)四邊形為菱形;理由如下:

,,

,

,,

四邊形為平行四邊形,

中,

,

平行四邊形為菱形,

時,四邊形為菱形;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為傳播奧運知識,小剛就本班學生對奧運知識的了解程度進行了一次調(diào)查統(tǒng)計:A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)在條形圖中,將表示“一般了解”的部分補充完整;

(2)在扇形統(tǒng)計圖中,計算出“了解較多”部分所對應(yīng)的圓心角的度數(shù)為______;

(3)如果全年級共1000名同學,請你估算全年級對奧運知識“了解較多”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線,點,在直線上,點,在直線上,且,若保持不動,線段向右勻速平移,如圖2反映了的長度隨時間的變化而變化的情況,則:

1)在線段開始平移之前, ;

2)線段向右平移了 ,向右平移的速度是 ;

3)如圖3反映了的面積隨時間的變化而變化的情況,則

①平行線,之間的距離是

②當時,直接寫出關(guān)于的函數(shù)關(guān)系式(不必化簡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG

2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】織里某品牌童裝在甲、乙兩家門店同時銷售A,B兩款童裝,4月份甲門店銷售A款童裝60件,B款童裝15件,兩款童裝的銷售總額為3600元,乙門店銷售A款童裝40件,B款童裝60件,兩款童裝的銷售總額為4400元.

(1)A款童裝和B款童裝每件售價各是多少元?

(2)現(xiàn)計劃5月將A款童裝的銷售額增加20%,問B款童裝的銷售額需增加百分之幾,才能使A,B兩款童裝的銷售額之比為4:3?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象為直線,函數(shù)的圖象為直線,直線、分別交軸于點和點,分別交軸于點,相交于點

(1)填空:  ;求直線的解析式為 ;

(2)若點軸上一點,連接,當的面積是面積的2倍時,請求出符合條件的點的坐標;

(3)若函數(shù)的圖象是直線,且、、不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正內(nèi)一點,,,,將線段以點為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段,下列結(jié)論:①可以由繞點逆時針旋轉(zhuǎn)60°得到;②點的距離為6;③;④;⑤.其中正確的結(jié)論是(填序號)______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加全國比賽更合適,請說明理由.

計算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明是一位善于思考的學生,在一次數(shù)學活動課上,他將一副直角三角板如圖位置擺放,A、B、D在同一直線上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,試求BD的長.

查看答案和解析>>

同步練習冊答案