如圖,把△ABC沿直線BC翻折180°到△DBC,那么△ABC≌△______;若△ABC的面積為2,那么△BDC的面積為______    ____.

 

【答案】

DBC,2

【解析】

試題分析:根據(jù)翻折的性質(zhì)可得△ABC≌△DBC,再根據(jù)全等三角形的性質(zhì)即可得到結(jié)果。

∵把△ABC沿直線BC翻折180°到△DBC,

∴△ABC≌△DBC,

∴△BDC的面積為2.

考點(diǎn):本題考查翻折的性質(zhì),全等三角形的性質(zhì)

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握全等三角形的面積相等.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P為線段EF上的一個動點(diǎn),過點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過M作MN∥AO交折線ABC于點(diǎn)N,連接PN.設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點(diǎn)D與點(diǎn)C重合時停止(如圖2).設(shè)運(yùn)動時間為t秒,運(yùn)動后的直角梯形為E′D′G′H′;探究:在運(yùn)動過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省金華四中九年級畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(帶解析) 題型:解答題

如圖1,在等腰梯形ABCO中,ABCO,EAO的中點(diǎn),過點(diǎn)EEFOCBCFAO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OCx軸正半軸上,點(diǎn)A,B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo)及線段AB的長;
(2)點(diǎn)P為線段EF上的一個動點(diǎn),過點(diǎn)PPMEFOC于點(diǎn)M,過MMNAO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點(diǎn)D與點(diǎn)C重合時停止(如圖2).設(shè)運(yùn)動時間為t秒,運(yùn)動后的直角梯形為EDGH′(如圖3);試探究:在運(yùn)動過程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省江山市中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi)。
(1)  求點(diǎn)E的坐標(biāo);
(2)  點(diǎn)P為線段EF上的一個動點(diǎn),過點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過M作MN∥AO交折線ABC于點(diǎn)N,
連結(jié)PN。設(shè)PE=x.△PMN的面積為S。
① 求S關(guān)于x的函數(shù)關(guān)系式;
② △PMN的面積是否存在最大值,若不存在,請說明理由。若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點(diǎn)D與點(diǎn)C重合時停止(如圖2)。設(shè)運(yùn)動時間為t秒,運(yùn)動后的直角梯形為E′D′G′H′;探究:在運(yùn)動過程中,等腰梯形ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省江山市中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi)。

(1)   求點(diǎn)E的坐標(biāo);

(2)   點(diǎn)P為線段EF上的一個動點(diǎn),過點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過M作MN∥AO交折線ABC于點(diǎn)N,

連結(jié)PN。設(shè)PE=x.△PMN的面積為S。

①  求S關(guān)于x的函數(shù)關(guān)系式;

②  △PMN的面積是否存在最大值,若不存在,請說明理由。若存在,求出面積的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC),F(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點(diǎn)D與點(diǎn)C重合時停止(如圖2)。設(shè)運(yùn)動時間為t秒,運(yùn)動后的直角梯形為E′D′G′H′;探究:在運(yùn)動過程中,等腰梯形ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關(guān)系式。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省九年級畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(解析版) 題型:解答題

如圖1,在等腰梯形ABCO中,ABCO,EAO的中點(diǎn),過點(diǎn)EEFOCBCF,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OCx軸正半軸上,點(diǎn)AB在第一象限內(nèi).

(1)求點(diǎn)E的坐標(biāo)及線段AB的長;

(2)點(diǎn)P為線段EF上的一個動點(diǎn),過點(diǎn)PPMEFOC于點(diǎn)M,過MMNAO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.

①求S關(guān)于x的函數(shù)關(guān)系式;

②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點(diǎn)D與點(diǎn)C重合時停止(如圖2).設(shè)運(yùn)動時間為t秒,運(yùn)動后的直角梯形為EDGH′(如圖3);試探究:在運(yùn)動過程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時間t的函數(shù)關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊答案