(2010•蕪湖)已知x1、x2為方程x2+3x+1=0的兩實根,則x13+8x2+20=   
【答案】分析:由于x1、x2是方程的兩根,根據(jù)根與系數(shù)的關(guān)系可得到兩根之和的值,根據(jù)方程解的定義可得到x12、x1的關(guān)系,根據(jù)上面得到的條件,對所求的代數(shù)式進行有針對性的拆分和化簡,然后再代值計算.
解答:解:∵x1、x2為方程x2+3x+1=0的兩實根,
∴x12=-3x1-1,x1+x2=-3;
∴x13+8x2+20=(-3x1-1)x1+8x2+20
=-3x12-x1+8x2+20
=-3(-3x1-1)-x1+8x2+20
=9x1-x1+8x2+23
=8(x1+x2)+23
=-24+23
=-1.
故x13+8x2+20=-1.
點評:此題是典型的代數(shù)求值問題,涉及到根與系數(shù)的關(guān)系以及方程解的定義.在解此類題時,如果所求代數(shù)式無法化簡,應(yīng)該從已知入手看能得到什么條件,然后根據(jù)得到的條件對所求代數(shù)式進行有針對性的化簡和變形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2010•蕪湖)圖1為已建設(shè)封項的16層樓房和其塔吊圖,圖2為其示意圖,吊臂AB與地面EH平行,測得A點到樓頂D點的距離為5m,每層樓高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的長?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一元二次方程》(03)(解析版) 題型:填空題

(2010•蕪湖)已知x1、x2為方程x2+3x+1=0的兩實根,則x13+8x2+20=   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學試卷(解析版) 題型:解答題

(2010•蕪湖)圖1為已建設(shè)封項的16層樓房和其塔吊圖,圖2為其示意圖,吊臂AB與地面EH平行,測得A點到樓頂D點的距離為5m,每層樓高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的長?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市中考數(shù)學試卷(解析版) 題型:填空題

(2010•蕪湖)如圖,光源P在橫桿AB的上方,AB在燈光下的影子為CD,AB∥CD,已知AB=2m,CD=6m,點P到CD的距離是2.7m,那么AB與CD間的距離是   

查看答案和解析>>

同步練習冊答案