如圖,在一邊靠墻(墻足夠長)用120m籬笆圍成兩間相等的矩形雞舍,要使雞舍的總面積最大,則每間雞舍的長與寬分別是______m、______m.
設(shè)矩形寬為y(0<y<30),則長為(120-3y),
所以矩形面積S=y(120-3y)=-3y 2+120y.(0<y<30),
∵0<y<30,
∴y=-
120
2×(-3)
=20 米時(shí),雞舍的總面積最大,
此時(shí)寬為20米,長為30米.
答:當(dāng)矩形的長為30米,寬為20米時(shí),雞場(chǎng)面積最大.
故答案為:30,20.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y1=mx2+(m-3)x-3(m>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A的坐標(biāo);
(2)當(dāng)∠ABC=45°時(shí),求m的值;
(3)已知一次函數(shù)y2=kx+b,點(diǎn)P(n,0)是x軸上的一個(gè)動(dòng)點(diǎn),在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個(gè)一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于N.若只有當(dāng)-2<n<2時(shí),點(diǎn)M位于點(diǎn)N的上方,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B、C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi).
(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
(4)求出當(dāng)x為何值時(shí)P有最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=(x+1)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3)
(1)求拋物線的對(duì)稱軸及k的值;
(2)拋物線的對(duì)稱軸上存在一點(diǎn)P,使得PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是拋物線上的一動(dòng)點(diǎn),且在第三象限.
①當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),△AMB的面積最大?求出△AMB的最大面積及此時(shí)點(diǎn)M的坐標(biāo);
②當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A,B兩點(diǎn),A在B的左側(cè),A坐標(biāo)為(-1,0)與y軸交于點(diǎn)C(0,3)△ABC的面積為6.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與直線BC相交于點(diǎn)M,點(diǎn)N為x軸上一點(diǎn),當(dāng)以M,N,B為頂點(diǎn)的三角形與△ABC相似時(shí),請(qǐng)你求出BN的長度;
(3)設(shè)拋物線的頂點(diǎn)為D在線段BC上方的拋物線上是否存在點(diǎn)P使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,中國首個(gè)空間實(shí)驗(yàn)室“天宮一號(hào)”于2011年9月29日成功發(fā)射.某科技實(shí)驗(yàn)小組也自行設(shè)計(jì)了火箭,經(jīng)測(cè)試,該種火箭被豎直向上發(fā)射時(shí),它的高度h(m)與時(shí)間t(s)的關(guān)系可以用公式h=-t2+10t-15表示,經(jīng)過______s,火箭達(dá)到它的最高點(diǎn)10米處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,橫坐標(biāo)與縱坐標(biāo)都是整數(shù)的點(diǎn)(x,y)稱為整點(diǎn),如果將二次函數(shù)y=x2+8x-
39
4
的圖象與x軸所圍成的封閉圖形染成紅色,則此紅色區(qū)域內(nèi)部及其邊界上的整點(diǎn)個(gè)數(shù)有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某同學(xué)在探究二次函數(shù)圖象時(shí),作直線y=m平行于x軸,交二次函數(shù)y=x2的圖象于A、B兩點(diǎn),作AC、BD分別垂直于x軸,發(fā)現(xiàn)四邊形ABCD是正方形.
(1)求m的值及A、B兩點(diǎn)的坐標(biāo);
(2)如圖所示,將拋物線“y=x2”改為“y=x2-2x+2”,直線CD經(jīng)過拋物線的頂點(diǎn)P與x軸平行,其它關(guān)系不變,求m的值及A、B兩點(diǎn)的坐標(biāo).
(3)如圖所示,將圖中的改為“y=ax2+bx+c(a>0),其它關(guān)系不變,請(qǐng)直接寫出m的值及A、B兩點(diǎn)的坐標(biāo)(用含有a、b、c的代數(shù)式表示)
[提示:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
),對(duì)稱軸為x=-
b
2a
].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點(diǎn)一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM•ON=3,且OM≠ON時(shí),求拋物線的解析式;
(3)若(2)中所求拋物線頂點(diǎn)為C,與y軸交點(diǎn)在原點(diǎn)上方,拋物線的對(duì)稱軸與x軸交于點(diǎn)B,直線y=-x+3與x軸交于點(diǎn)A.點(diǎn)P為拋物線對(duì)稱軸上一動(dòng)點(diǎn),過點(diǎn)P作PD⊥AC,垂足D在線段AC上.試問:是否存在點(diǎn)P,使S△PAD=
1
4
S△ABC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案