【題目】如圖,拋物線(xiàn)y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).
(1)求拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對(duì)稱(chēng)軸上一點(diǎn),F(xiàn)C∥x軸,與對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2﹣x+2;(2)(5,2);(3)存在點(diǎn)P(,﹣)或(,)或(,)或(,)
【解析】
試題分析:方法一:
(1)把點(diǎn)A、B的坐標(biāo)代入函數(shù)解析式,解方程組求出a、b的值,即可得解;
(2)根據(jù)拋物線(xiàn)解析式求出對(duì)稱(chēng)軸,再根據(jù)平行四邊形的對(duì)角線(xiàn)互相平分求出點(diǎn)C的橫坐標(biāo),然后代入函數(shù)解析式計(jì)算求出縱坐標(biāo),即可得解;
(3)設(shè)AC、EF的交點(diǎn)為D,根據(jù)點(diǎn)C的坐標(biāo)寫(xiě)出點(diǎn)D的坐標(biāo),然后分①點(diǎn)O是直角頂點(diǎn)時(shí),求出△OED和△PEO相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出PE,然后寫(xiě)出點(diǎn)P的坐標(biāo)即可;②點(diǎn)C是直角頂點(diǎn)時(shí),同理求出PF,再求出PE,然后寫(xiě)出點(diǎn)P的坐標(biāo)即可;③點(diǎn)P是直角頂點(diǎn)時(shí),利用勾股定理列式求出OC,然后根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可得PD=OC,再分點(diǎn)P在OC的上方與下方兩種情況寫(xiě)出點(diǎn)P的坐標(biāo)即可.
方法二:
(1)略.
(2)因?yàn)樗倪呅蜲ECF是平行四邊形,且FC∥x軸,列出F,C的參數(shù)坐標(biāo),利用FC=OE,可求出C點(diǎn)坐標(biāo).
(3)列出點(diǎn)P的參數(shù)坐標(biāo),分別列出O,C兩點(diǎn)坐標(biāo),由于△OCP是直角三角形,所以分別討論三種垂直的位置關(guān)系,利用斜率垂直公式,可求出三種情況下點(diǎn)P的坐標(biāo).
方法一:
解:(1)把點(diǎn)A(1,0)和B(4,0)代入y=ax2+bx+2得,
,
解得,
所以,拋物線(xiàn)的解析式為y=x2﹣x+2;
(2)拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=,
∵四邊形OECF是平行四邊形,
∴點(diǎn)C的橫坐標(biāo)是×2=5,
∵點(diǎn)C在拋物線(xiàn)上,
∴y=×52﹣×5+2=2,
∴點(diǎn)C的坐標(biāo)為(5,2);
(3)設(shè)OC與EF的交點(diǎn)為D,
∵點(diǎn)C的坐標(biāo)為(5,2),
∴點(diǎn)D的坐標(biāo)為(,1),
①點(diǎn)O是直角頂點(diǎn)時(shí),易得△OED∽△PEO,
∴=,
即=,
解得PE=,
所以,點(diǎn)P的坐標(biāo)為(,﹣);
②點(diǎn)C是直角頂點(diǎn)時(shí),同理求出PF=,
所以,PE=+2=,
所以,點(diǎn)P的坐標(biāo)為(,);
③點(diǎn)P是直角頂點(diǎn)時(shí),由勾股定理得,OC==,
∵PD是OC邊上的中線(xiàn),
∴PD=OC=,
若點(diǎn)P在OC上方,則PE=PD+DE=+1,
此時(shí),點(diǎn)P的坐標(biāo)為(,),
若點(diǎn)P在OC的下方,則PE=PD﹣DE=﹣1,
此時(shí),點(diǎn)P的坐標(biāo)為(,),
綜上所述,拋物線(xiàn)的對(duì)稱(chēng)軸上存在點(diǎn)P(,﹣)或(,)或(,)或(,),使△OCP是直角三角形.
方法二:
(1)略.
(2)∵FC∥x軸,∴當(dāng)FC=OE時(shí),四邊形OECF是平行四邊形.
設(shè)C(t,),
∴F(,+2),
∴t﹣=,
∴t=5,C(5,2).
(3)∵點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸上,設(shè)P(,t),O(0,0),C(5,2),
∵△OCP是直角三角形,∴OC⊥OP,OC⊥PC,OP⊥PC,
①OC⊥OP,∴KOC×KOP=﹣1,∴,
∴t=﹣,∴P(,﹣),
②OC⊥PC,∴KOC×KPC=﹣1,∴=﹣1,
∴t=,P(,),
③OP⊥PC,∴KOP×KPC=﹣1,∴,
∴4t2﹣8t﹣25=0,∴t=或,
點(diǎn)P的坐標(biāo)為(,)或(,),
綜上所述,拋物線(xiàn)的對(duì)稱(chēng)軸上存在點(diǎn)P(,﹣)或(,)或(,)或(,),使△OCP是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)(m,n),規(guī)定以下兩種變換:
(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】陸地上最高處是珠穆朗瑪峰頂,高出海平面約8848m,記為+8848m;陸地上最低處是地處亞洲西部的死海,低于海平面約415m,記為_____________ m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩條對(duì)角線(xiàn)互相垂直平分且相等的四邊形是( 。
A. 矩形 B. 菱形 C. 正方形 D. 都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌自行車(chē)1月份銷(xiāo)售量為100輛,每輛車(chē)售價(jià)相同.2月份的銷(xiāo)售量比1月份增加10%,每輛車(chē)的售價(jià)比1月份降低了80元.2月份與1月份的銷(xiāo)售總額相同,則1月份的售價(jià)為( )
A.880元 B.800元 C.720元 D.1080元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的每一個(gè)內(nèi)角都等于140°,那么從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線(xiàn)的條數(shù)是( )
A.6條
B.7條
C.8條
D.9條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A=∠B+∠C,則對(duì)△ABC的形狀判斷正確的是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索題:圖a是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀均分成四塊小長(zhǎng)方形,然后按圖b的形狀拼成一個(gè)正方形.
(1)請(qǐng)用兩種不同的方法,求圖b中陰影部分的面積:
方法1: ; 方法2: ;
(2)觀察圖b,寫(xiě)出代數(shù)式, , 之間的等量關(guān)系,并通過(guò)計(jì)算驗(yàn)證;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:若, ,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com