【題目】如圖,在長(zhǎng)方形ABCD,AB=12厘米,BC=6厘米.點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B2cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A1cm、s的速度移動(dòng).如果P、Q同時(shí)出發(fā),()表示移動(dòng)的時(shí)間,那么:

(1)如圖1,當(dāng)為何值時(shí),QAP為等腰直角三角形?

(2)如圖2,當(dāng)為何值時(shí),QAB的面積等于長(zhǎng)方形面積的

(3)如圖3,PQ到達(dá)B、A后繼續(xù)運(yùn)動(dòng),P點(diǎn)到達(dá)C點(diǎn)后都停止運(yùn)動(dòng).當(dāng)為何值時(shí),線段AQ的長(zhǎng)等于線段CP的長(zhǎng)的一半?

【答案】13;(2);(37.5

【解析】

1)根據(jù)已知條件得到DQ=tcm,AQ=6-tcm,根據(jù)三角形的面積列方程即可得到結(jié)論;

2)根據(jù)等腰三角形的性質(zhì)列方程即可得到結(jié)論;

3)根據(jù)已知條件得到AQ=t-6cm,CP=18-2tcm,依題意使線段AQ的長(zhǎng)等于線段CP的長(zhǎng)的一半,列方程即可得到結(jié)論.

1)由題可知:DQ=tcm,AQ=6-tcm,

∵△QAB的面積=6-t×12,

依題意得:6-t×12=×6×12

解得:t=3;

2)由題可知:DQ=tcmAQ=6-tcm,AP=2tcm,

使QAP為等腰三角形,

AQ=AP,

6-t=2t

解得t=2;

3)由題可知:AQ=t-6cm,CP=18-2tcm,

依題意使線段AQ的長(zhǎng)等于線段CP的長(zhǎng)的一半,

t-6=18-2t),

解得:t=7.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)A(0,0)、B(4 ,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1 , 第2個(gè)△B1A2B2 , 第3個(gè)△B2A3B3 , …則第2017個(gè)等邊三角形的邊長(zhǎng)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更新果樹(shù)品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹(shù)苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹(shù)苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無(wú)解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之和是(
A.﹣2
B.﹣3
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1(xy)22x(xy);     2(a1)(a1)(a1)2;

3)先化簡(jiǎn),再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1) 3x2 2x 0; (2)

(3) x2 +2 x 5 0; (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在一次課外活動(dòng)中,用硬紙片做了兩個(gè)直角三角形,見(jiàn)圖(1)、圖(2).在圖(1)中,∠B=90°,∠A=30°;圖(2)中,∠D=90°,∠F=45°.圖(3)是該同學(xué)所做的一個(gè)實(shí)驗(yàn):他將DEF的直角邊DEABC的斜邊AC重合在一起,并將DEF沿AC方向移動(dòng).在移動(dòng)過(guò)程中,DE兩點(diǎn)始終在AC邊上,移動(dòng)開(kāi)始時(shí),點(diǎn)D與點(diǎn)A重合.

(1)DEF在移動(dòng)過(guò)程中,∠FCE與∠CFE度數(shù)之和是否為定值,請(qǐng)加以說(shuō)明;

(2)能否將DEF移動(dòng)至某位置,使F、C的連線與AB平行?若能,求出∠CFE的度數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;

(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對(duì)稱,若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC中,AD是BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊BEF,連接CF.

(1)求證:AE=CF;

(2)求ACF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案