【題目】為了落實黨的“精準(zhǔn)扶貧”政策,A,B兩城決定向C,D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn).已知A,B兩城共有肥料500噸,其中A城肥料比B城肥料少100噸,從A,B城往C,D兩鄉(xiāng)運肥料的平均費用如表:
A城 | B城 | |
C鄉(xiāng) | 20元/噸 | 15元/噸 |
D鄉(xiāng) | 25元/噸 | 30元/噸 |
現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從B城運往D鄉(xiāng)x噸肥料,總運費為y元,求y與x之間的函數(shù)關(guān)系,并說明如何安排運輸才能使得總運費最?
【答案】(1)A城和B城分別有200噸和300噸肥料;(2)y=10x+9800,當(dāng)x=60時,總運費最少,最少運費是10400元;
【解析】
(1)根據(jù)A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,列方程或方程組得答案;
(2)設(shè)從B城運往D鄉(xiāng)肥料x噸,用含x的代數(shù)式分別表示出從A運往運往D鄉(xiāng)的肥料噸數(shù),從B城運往C鄉(xiāng)肥料噸數(shù),及從A城運往C鄉(xiāng)肥料噸數(shù),根據(jù):運費=運輸噸數(shù)×運輸費用,得一次函數(shù)解析式;
解:(1)設(shè)A城有化肥a噸,B城有化肥b噸
根據(jù)題意,得 ,
解得 ,
答:A城和B城分別有200噸和300噸肥料;
(2)設(shè)從B城運往D鄉(xiāng)肥料x噸,則運往B城運往C鄉(xiāng)(300-x)噸
從A城運往D鄉(xiāng)肥料(260-x)噸,則運往C鄉(xiāng)(x-60)噸
如總運費為y元,根據(jù)題意,
則:y=20(x-60)+25(260-x)+15(300-x)+30x=10x+9800,
由于函數(shù)是一次函數(shù),k=10>0,
∵ ,
∴60≤x≤260
所以當(dāng)x=60時,總運費最少,最少運費是10400元;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,D,E,F分別是AB,BC,AC的中點,連結(jié)DF,EF,BF.
(1)求證:四邊形BEFD是平行四邊形;
(2)若∠AFB=90°,AB=4,求四邊形BEFD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點G在邊DC的延長線上,AG交邊BC于點E,交對角線BD于點F.
(1)求證:AF2=EFFG;
(2)如果EF=,F(xiàn)G=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為(,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:
時間第天 | 1 | 2 | 3 | … | 80 |
銷售單價(元/) | 49. 5 | 49 | 48. 5 | … | 10 |
(1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;
(2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF均為等腰直角三角形,AB=2,DE=1,E、B、F、C在同一條直線上,開始時點B與點F重合,讓△DEF沿直線BC向右移動,最后點C與點E重合,設(shè)兩三角形重合面積為y,點F移動的距離為x,則y關(guān)于x的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交與O點,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列4個結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④CF=BD.正確的結(jié)論是( 。
A.①②④B.①④C.③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的動點和圖形,給出如下定義:如果為圖形上一個動點,,兩點間距離的最大值為,,兩點間距離的最小值為,我們把的值叫點和圖形間的“和距離”,記作(,圖形).
(1)如圖,正方形的中心為點,.
①點到線段的“和距離”(,線段)=______;
②設(shè)該正方形與軸交于點和,點在線段上,(,正方形)=7,求點的坐標(biāo).
(2)如圖2,在(1)的條件下,過,兩點作射線,連接,點是射線上的一個動點,如果(,線段),直接寫出點橫坐標(biāo)取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com