如圖,,上一點(diǎn), 于點(diǎn)的延長線交的延長線于點(diǎn).求證:是等腰三角形.
見解析
證明:∵ ,∴ ∠
于點(diǎn),∴ ∠,
∴ ∠.∴ ∠
∵ ∠,∴ ∠.∴ △是等腰三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,的內(nèi)接三角形,為 上一點(diǎn),延長至點(diǎn),使

(1)求證:;
(2)若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.現(xiàn)將△DEF的直角邊DF與△ABC的斜邊AB重合在一起,并將△DEF沿AB方向移動(dòng)(如圖).在移動(dòng)過程中,D、F兩點(diǎn)始終在AB邊上(移動(dòng)開始時(shí)點(diǎn)D與點(diǎn)A重合,一直移動(dòng)至點(diǎn)F與點(diǎn)B重合為止).

(1)在△DEF沿AB方向移動(dòng)的過程中,有人發(fā)現(xiàn):E、B兩點(diǎn)間的距離隨AD的變化而變化,現(xiàn)設(shè)AD="x,BE=y," 請你寫出之間的函數(shù)關(guān)系式及其定義域.
(2)請你進(jìn)一步研究如下問題:
問題①:當(dāng)△DEF移動(dòng)至什么位置,即AD的長為多少時(shí),E、B的連線與AC平行?
問題②:在△DEF的移動(dòng)過程中,是否存在某個(gè)位置,使得?如果存在,求出AD的長度;如果不存在,請說明理由.
問題③:當(dāng)△DEF移動(dòng)至什么位置,即AD的長為多少時(shí),以線段AD、EB、BC的長度為三邊長的三角形是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

解決下面問題:
如圖,在△ABC中,∠A是銳角,點(diǎn)D,E分別在AB,AC上,且,BE與CD相交于點(diǎn)O,探究BD與CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

小新同學(xué)是這樣思考的:
在平時(shí)的學(xué)習(xí)中,有這樣的經(jīng)驗(yàn):假如△ABC是等腰三角形,那么在給定一組對應(yīng)條件,如圖a,BE,CD分別是兩底角的平分線(或者如圖b,BE,CD分別是兩條腰的高線,或者如圖c,BE,CD分別是兩條腰的中線)時(shí),依據(jù)圖形的軸對稱性,利用全等三角形和等腰三角形的有關(guān)知識就可證得更多相等的線段或相等的角.這個(gè)問題也許可以通過添加輔助線構(gòu)造軸對稱圖形來解決.

圖a                      圖b                      圖c
請參考小新同學(xué)的思路,解決上面這個(gè)問題..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AC=AD,∠1=∠2,只添加一個(gè)條件使△ABC≌△AED,你添加的條件是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法不正確的是
A.三個(gè)角的度數(shù)之比為1∶3∶4的三角形是直角三角形
B.三個(gè)角的度數(shù)之比為3∶4∶5的三角形是直角三角形
C.三邊長度之比為3∶4∶5的三角形是直角三角形
D.三邊長度之比為5∶12∶13的三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC中,AB=AC=5,BC=6,點(diǎn)D是BC上的一點(diǎn),那么點(diǎn)D到AB與AC的距離的和為( 。
A.5 B.6 C.4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知四邊形ABCD是菱形,∠A=72°,將它分割成如圖所示的四個(gè)等腰三角形,那么∠1+∠2+∠3=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直角三角形兩直角邊長分別是5 cm、12 cm,其斜邊上的高是_______.

查看答案和解析>>

同步練習(xí)冊答案