(2012•六合區(qū)一模)觀察猜想
如圖,大長(zhǎng)方形是由四個(gè)小長(zhǎng)方形拼成的,請(qǐng)根據(jù)此圖填空:x2+(p+q)x+pq=x2+px+qx+pq=(
x+p
x+p
)(
x+q
x+q
).
說(shuō)理驗(yàn)證
事實(shí)上,我們也可以用如下方法進(jìn)行變形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=
x(x+p)+q(x+p)
x(x+p)+q(x+p)
=(
x+p
x+p
)(
x+q
x+q
).
于是,我們可以利用上面的方法進(jìn)行多項(xiàng)式的因式分解.
嘗試運(yùn)用
例題  把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
請(qǐng)利用上述方法將下列多項(xiàng)式分解因式:
(1)x2-7x+12;             (2)(y2+y)2+7(y2+y)-18.
分析:由矩形的面積公式可以求得x2+px+qx+pq=(x+p)(x+q);
利用分組的方法可以先分組然后提公因式法可以分解因式為:x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q);
根據(jù)x2+(p+q)x+pq=(x+p)(x+q)的形式的運(yùn)用,可以將一個(gè)二次三項(xiàng)式分解因式,從而求出結(jié)果.
解答:解:由矩形的面積公式得:(x+p)(x+q);
根據(jù)分組分解法得:x(x+p)+q(x+p),(x+p)(x+q);
(1)原式=(x-3)(x-4)
(2)原式=(y2+y+9)(y2+y-2)
=(y2+y+9)(y+2)(y-1).
故答案為:(x+p)(x+q);x(x+p)+q(x+p),(x+p)(x+q);
點(diǎn)評(píng):本題是一道因式分解的試題,考查了十字相乘法在實(shí)際問(wèn)題中的運(yùn)用,分組分解法的運(yùn)用,提公因式法的運(yùn)用.在分解因式時(shí),要分解到不能再分解為止.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)有3張背面相同的卡片,正面分別寫(xiě)著數(shù)字“1”、“2”、“3”.將卡片洗勻后背面朝上放在桌面上.
(1)若小明從中任意抽取一張,則抽到奇數(shù)的概率是
2
3
2
3
;
(2)若小明從中任意抽取一張后,小亮再?gòu)氖S嗟膬蓮埧ㄆ谐槿∫粡,?guī)定:抽到的兩張卡片上的數(shù)字之和為奇數(shù),則小明勝,否則小亮勝.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)如圖,A是反比例函數(shù)y=
k
x
圖象上一點(diǎn),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,點(diǎn)P在y軸上,△ABP的面積為1,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)如圖,已知AB∥CD,∠EFA=50°,則∠DCE等于
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)如圖,∠A是⊙O的圓周角,∠OBC=30°,則∠A的度數(shù)為
60
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)解不等式組
2(x+2)≤3x+3
x
3
x+1
4
,并判斷x=2
3
是否為此不等式組的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案