操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng)(點(diǎn)P與點(diǎn)A不重合),直角的一邊始終經(jīng)過點(diǎn)B,直角的另一邊與射線DC相交于點(diǎn)Q.
探究:設(shè)A、P兩點(diǎn)的距離為x,問當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ能否成為等腰三角形:
 
(用“能”或“不能”填空).若能,直接寫出使△PCQ成為等腰三角形時(shí)相應(yīng)的x的值;若不能,請(qǐng)簡(jiǎn)要說明理由:
 
分析:首先過點(diǎn)P作PF⊥BC于點(diǎn)F,PE⊥CD于點(diǎn)E,易證得四邊形PFCE是正方形,設(shè)AP=x,CQ=y,易求得當(dāng)Q在DC上時(shí),y=1-
2
x,當(dāng)點(diǎn)Q在邊DC的延長(zhǎng)線上時(shí),y=
2
x-1,然后分別分析PC=CQ與PQ=QC時(shí)的情景,即可求得答案.
解答:解:能.
理由:精英家教網(wǎng)
如圖,當(dāng)Q在DC上時(shí),過點(diǎn)P作PF⊥BC于點(diǎn)F,PE⊥CD于點(diǎn)E,
∵∠BCD=90°
∴四邊形PFCE是矩形,
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四邊形PFCE是正方形.
∵AP=x,CQ=y,
∵AB=BC=1,
∴AC=
2

∵四邊形PFCE是正方形,
∴PC=
2
-x,
∴CE=1-
2
2
x,
∴BF=1-FC=1-(1-
2
2
x)=
2
2
x,
∴EQ=
2
2
x,
∴y=CQ=(1-
2
2
x)-
2
2
x=1-
2
x,
∴y=1-
2
x(0≤x≤
2
2
);
同理:當(dāng)點(diǎn)Q在邊DC的延長(zhǎng)線上時(shí),
∵PC=
2
-x,利用勾股定理得出:EC=1-
2
2
x,
EQ=BF=MP=
2
2
x,
∴CQ=EQ-EC=
2
x-1,
∴y=
2
x-1(
2
2
≤x≤
2
);
∴①當(dāng)點(diǎn)P與點(diǎn)A重合,點(diǎn)Q與點(diǎn)D重合,這時(shí)PQ=QC,△PCQ是等腰三角形,此時(shí)x=0;
②當(dāng)點(diǎn)Q在邊DC的延長(zhǎng)線上,且CP=CQ時(shí),△PCQ是等腰三角形(如圖),此時(shí),QN=PM=
2
2
x,CP=
2
-x,CN=
2
2
CP=1-
2
2
x,
∴CQ=QN-CN=
2
2
x-(1-
2
2
x)=
2
x-1,
當(dāng)
2
-x=
2
x-1時(shí),得x=1.
∴當(dāng)x=0或1時(shí),△PCQ是等腰三角形.
精英家教網(wǎng)
點(diǎn)評(píng):此題考查正方形的性質(zhì),直角三角形的性質(zhì),等腰三角形的判定與性質(zhì)以及一次函數(shù)的應(yīng)用等知識(shí).此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意在正方形中的特殊三角形的應(yīng)用,搞清楚矩形、菱形、正方形中的三角形的三邊關(guān)系,可有助于提高解題速度和準(zhǔn)確率,注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
探究:設(shè)A、P兩點(diǎn)間的距離為x.
(1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
(2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線上滑動(dòng),直角的一邊始終經(jīng)過B點(diǎn),另一邊與射線DC相交于點(diǎn)Q.設(shè)AP=x.
(1)當(dāng)Q點(diǎn)在CD上時(shí),線段PQ與線段PB的大小關(guān)系怎樣?并證明你的結(jié)論;
(2)當(dāng)Q在CD上時(shí),設(shè)四邊形PBCQ面積為y,求y與x之間的函數(shù)關(guān)系,并寫出x的取值范圍;
(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng),且Q在DC延長(zhǎng)線上時(shí),△PCQ能否為等腰三角形?若能,求出x的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
探究:設(shè)A、P兩點(diǎn)間的距離為x.
(1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
(2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)全真模擬試卷(9)(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
探究:設(shè)A、P兩點(diǎn)間的距離為x.
(1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
(2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).

查看答案和解析>>

同步練習(xí)冊(cè)答案