(2011•遼陽)如圖,⊙O經(jīng)過點(diǎn)B、D、E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)試說明直線AC是⊙O的切線;
(2)當(dāng)AE=4,AD=2時(shí),求⊙O的半徑及BC的長.
分析:(1)連接OE,證明出∠AEO=90°,即可說明直線AC是⊙O的切線;
(2)知道OE∥BC,利用平行線分線段成比例定理即可解答.
解答:(1)證明:連接OE.
∵BE是∠ABC的平分線,
∴∠1=∠2.
∵OE=OB,
∴∠1=∠3.
∴∠2=∠3.
∴OE∥BC.
又∠C=90°,
∴∠AEO=90°.
∴AC是⊙O的切線.

(2)解:設(shè)⊙O的半徑為r,在Rt△AEO中,由勾股定理可得OA2=OE2+AE2
∵AE=4,AD=2,
∴(2+r)2=r2+42
∴r=3.
∵OE∥BC,
AO
AB
=
OE
BC

2+3
2+6
=
3
BC

∴BC=
24
5
點(diǎn)評(píng):本題考查了切線的判定、勾股定理和平行線分線段成比例定理,是一道綜合題,但難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知等邊△ABC的面積為1,D、E分別為AB、AC的中點(diǎn),若向圖中隨機(jī)拋擲一枚飛鏢,飛鏢落在陰影區(qū)域的概率是(不考慮落在線上的情形)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,AB為⊙O直徑,CD⊥AB,∠BDC=35°,則∠CAD=
70°
70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知菱形ABCD的邊長為2,∠BAD=60°,若DE⊥AB,垂足為點(diǎn)E,則DE的長為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知Rt△ABO,∠BAO=90°,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)D處.
(1)求D點(diǎn)坐標(biāo);
(2)若拋物線y=ax2+bx+3(a≠0)經(jīng)過B、D兩點(diǎn),求此拋物線的表達(dá)式;
(3)若拋物線的頂點(diǎn)為E,它的對(duì)稱軸與OB交于點(diǎn)F,點(diǎn)P為射線OB上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)M.是否存在點(diǎn)P,使得以E、F、M、P為頂點(diǎn)的四邊形為等腰梯形?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
).

查看答案和解析>>

同步練習(xí)冊答案