(1999•哈爾濱)已知△ABC的兩邊長a=3,c=5,且第三邊長b為關于x的一元二次方程x2-4x+m=0的兩個正整數(shù)根之一,求sinA的值.
【答案】分析:根據(jù)根與系數(shù)的關系,兩根之和等于4,由兩個根是正整數(shù),分情況討論,再由三角形的三邊關系定理,確定b的值,從而求sinA的值.
解答:解:設xl,x2是關于x的方程x2-4x+m=0的兩個正整數(shù)根,∴x1+x2=4.
∴x1=1,x2=3或x1=x2=2或x1=3,x2=1.(2分)
∴b只能取l、2、3.(2分)
由三角形三邊關系定理,得
2<b<8,
∴b=3.(1分)
過C作CD⊥AB,垂足為D
∵AC=BC=3,
∴AD=AB=,
在Rt△ADC中,由勾股定理得:CD==(1分)
∴sinA=(1分)
點評:本題綜合考查了根的判別式和根與系數(shù)的關系,三角形的三邊關系定理和三角函數(shù),是一個綜合性的題目,也是一個難度中等的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標系中,以點A(4,0)為圓心,AO為半徑的圓交x軸于點B.設M為x軸上方的圓長交y軸于點D.
(1)當點P在弧OM上運動時,設PC=x,=y,求y與x之間的函數(shù)關系式及自變量的取值范圍;
(2)當點P運動到某一位置時,恰使OB=3OD,求此時AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標系中,以點A(4,0)為圓心,AO為半徑的圓交x軸于點B.設M為x軸上方的圓長交y軸于點D.
(1)當點P在弧OM上運動時,設PC=x,=y,求y與x之間的函數(shù)關系式及自變量的取值范圍;
(2)當點P運動到某一位置時,恰使OB=3OD,求此時AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3,OB=3.
(1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
(2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源:1999年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標系中,以點A(4,0)為圓心,AO為半徑的圓交x軸于點B.設M為x軸上方的圓長交y軸于點D.
(1)當點P在弧OM上運動時,設PC=x,=y,求y與x之間的函數(shù)關系式及自變量的取值范圍;
(2)當點P運動到某一位置時,恰使OB=3OD,求此時AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:填空題

(1999•哈爾濱)函數(shù)y=中,自變量x的取值范圍是   

查看答案和解析>>

同步練習冊答案