【題目】如圖,等腰三角形中,,,AD為底邊BC上的高,動點從點D出發(fā),沿DA方向勻速運動,速度為,運動到點停止,設運動時間為,連接BP.(0≤t≤8)
(1)求AD的長;
(2)設△APB的面積為y(cm),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,說明理由.
(4)是否存在某一時刻,使得點P在線段AB的垂直平分線上,若存在,求出的值;若不存在,說明理由.
【答案】(1)8;(2)y=24﹣3t(0≤t≤8);(3)存在,;(4)存在,
【解析】
(1)利用等腰三角形的性質以及勾股定理解決問題即可.
(2)根據(jù)y=S△APB=S△ABD﹣S△PBD,化簡計算即可.
(3)由題意S△APB:S△ABC=1:3,構建方程即可解決問題.
(4)由題意點P在線段AB的垂直平分線上,推出PA=PB,在Rt△PBD中,根據(jù)PB2=PD2+BD2,構建方程即可解決問題.
(1)∵AB=AC,AD⊥BC,
∴BC=DC=6cm,
在Rt△ABD中,∵∠ADB=90°,AB=10cm,BD=6cm,
∴AD===8(cm).
(2)y=S△APB=S△ABD﹣S△PBD=×6×8﹣×6×t=﹣3t+24.
∴y=24﹣3t(0≤t≤8).
(3)∵S△APB:S△ABC=1:3,
∴(24﹣3t):×12×8=1:3,
解得t=.
∴滿足條件的t的值為.
(4)由題意點P在線段AB的垂直平分線上,
∴PA=PB,
在Rt△PBD中,∵PB2=PD2+BD2,
∴t2=(8﹣t)2+62,
解得t=.
∴滿足條件的t的值為.
科目:初中數(shù)學 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數(shù)是單獨租用甲種車輛完成任務天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?
(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A,C,為半徑是6的⊙O上兩點,點B為的中點,以線段BA,BC為鄰邊作菱形ABCD,使點D落在⊙O內(不含圓周上),則下列結論:①直線BD必過圓心O;②菱形ABCD的邊長a的取值范圍是0<a<10;③若點D與圓心O重合,則∠ABC=120°;④若DO=2,則菱形ABCD的邊長為或.其中正確的是( 。
A. ①③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為豐富綜合實踐活動,開設了四個實驗室如下:A.物理;B.化學;C.信息;D.生物.為了解學生最喜歡哪個實驗室,隨機抽取了部分學生進行調查,每位被調查的學生都選擇了一個自己最喜歡的實驗室,調查后將調查結果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題
(1)求這次被調查的學生人數(shù).
(2)請將條形統(tǒng)計圖補充完整.
(3)求出扇形統(tǒng)計圖中B對應的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關系,根據(jù)圖象解答下列問題:
(1)求線段CD對應的函數(shù)關系式;
(2)在轎車追上貨車后到到達乙地前,何時轎車在貨車前30千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0且n=0.
(1)如果,其中a、b為有理數(shù),那么a= ,b= .
(2)如果,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點M在BA的延長線上,MD切⊙O于點D,過點B作BN⊥MD于點C,連接AD并延長,交BN于點N.
(1)求證:AB=BN;
(2)若⊙O半徑的長為3,cosB=,求MA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊△CDE,連結BE.
(1)求∠CAM的度數(shù);
(2)若點D在線段AM上時,求證:△ADC≌△BEC;
(3)當動D在直線AM上時,設直線BE與直線AM的交點為O,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com