某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此賀卡的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:
日銷售單價x(元) 3 4 5 6
日銷售量y(個) 20 15 12 10
則y與x之間的函數(shù)關(guān)系式為
y=
60
x
y=
60
x
分析:要確定y與x之間的函數(shù)關(guān)系式,通過觀察表中數(shù)據(jù),可以發(fā)現(xiàn)x與y的乘積是相同的,都是60,所以可知y與x成反比例,用待定系數(shù)法求解即可;
解答:解:因為x與y的乘積是相同的,所以可知y與x成反比例,
設(shè)y=
k
x

將(3,20)代入可得:20=
k
3
,
解得:k=60.
則y與x之間的函數(shù)關(guān)系式為y=
60
x

故答案為:y=
60
x
點評:本題考查了根據(jù)實際問題抽象反比例函數(shù)關(guān)系式的知識,解答本題的關(guān)鍵是仔細(xì)觀察所給數(shù)據(jù),確定函數(shù)的性質(zhì),利用待定系數(shù)法求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn),此商品的日銷售單價x(單位:元)與日銷售數(shù)量y(單位:張)之間有如下關(guān)系:
銷售單價x(元) 3 4 5 6
日銷售量y(元) 20 15 12 10
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標(biāo)系中描出實數(shù)對(x,y)的對應(yīng)點;
(2)確定y與x之間的函數(shù)關(guān)系式,并畫出圖象;
(3)設(shè)銷售此賀卡的日純利潤為w元,試求出w與x之間的函數(shù)關(guān)系式.若物價局規(guī)定該賀卡售價最高不超過10元/張,請你求出日銷售單價x定為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:
日銷售單價x(元) 3 4 5 6
日銷售量y(個) 20 15 12 10
(1)猜測并確定y與x之間的函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關(guān)系式.若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當(dāng)日銷售單價x定為多少時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場出售一批進(jìn)價為2.5元的禮品,銷售過程中發(fā)現(xiàn)商品單價x(元)與日銷售量y(個)之間有如下關(guān)系:
x(元) 3 5 6 9
y(個) 30 18 15 10
(1)試確定y與x之間的函數(shù)關(guān)系;(不寫自變量的取值范圍)
(2)若經(jīng)營此種賀卡的日利潤為W元,寫出W與x之間的函數(shù)關(guān)系式.
(3)若物價局規(guī)定單價最高不超過15元,請你確定當(dāng)日銷售單價x為多少元時,才能獲得當(dāng)日的最大銷售利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x元與日銷售量y個之間有如下關(guān)系:
x (元) 3 4 5 6
y (個) 20 15 12 10
①請你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和其它函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
②設(shè)經(jīng)營此賀卡的銷售利潤為W元,試求出W(元)與x(元)之間的函數(shù)關(guān)系式.若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當(dāng)日銷售單價x定為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

同步練習(xí)冊答案