【題目】如圖,有一個由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m及5m內(nèi),燈就會自動發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年是中國工農(nóng)紅軍長征勝利80周年,某商家用1200元購進(jìn)了一批長征勝利主題紀(jì)念衫,上市后果然供不應(yīng)求,商家又用2800元購進(jìn)了第二批這種紀(jì)念衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了5元.
(1)該商家購進(jìn)的第一批紀(jì)念衫單價是多少元?
(2)若兩批紀(jì)念衫按相同的標(biāo)價銷售,最后剩下20件按標(biāo)價八折優(yōu)惠賣出,如果兩批紀(jì)念衫全部售完利潤不低于640元(不考慮其它因素),那么每件紀(jì)念衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個推論指( )
A. S矩形ABMN=S矩形MNDCB. S矩形EBMF=S矩形AEFN
C. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生期末考試數(shù)學(xué)成績(單位:分)的頻率分布條形圖如圖所示,其中數(shù)據(jù)不在分點(diǎn)上,對圖中提供的信息作出如下的判斷:
(1)成績在49.5分~59.5分段的人數(shù)與89.5分~100分段的人數(shù)相等;
(2)成績在79.5~89.5分段的人數(shù)占30%;
(3)成績在79.5分以上的學(xué)生有20人;
(4)本次考試成績的中位數(shù)落在69.5~79.5分段內(nèi).
其中正確的判斷有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AB上,點(diǎn)D在y軸的負(fù)半軸上,C、D兩點(diǎn)到x軸的距離均為2.
(1)點(diǎn)C的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 ;
(2)點(diǎn)P為線段OA上的一動點(diǎn),當(dāng)PC+PD最小時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(m≠0)分別交于點(diǎn)A(4,1),B(﹣1,a)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出kx+b>的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度)
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于原點(diǎn)對稱;
(2)將△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出線段OB旋轉(zhuǎn)到OB2掃過圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分交BC于E,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)與探究:
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM⊥AE于點(diǎn)M,連接BD,則①線段AE、BD之間的大小關(guān)系是 ,∠ADB= °;②求證:AD=2CM+BD.
(2)問題拓展與應(yīng)用:
如圖2、圖3,等腰Rt△ABC中,∠ACB=90°,過點(diǎn)A作直線,在直線上取點(diǎn)D,∠ADC=45°,連結(jié)BD,BD=1,AC=,則點(diǎn)C到直線AD的距離是 .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com