如圖,在矩形OABC中,OA=3,OC=5,分別以O(shè)A、OC所在直線為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)y=(k > 0)的圖像經(jīng)過點(diǎn)D且與邊BA交于點(diǎn)E,連接DE.
(1) 連接OE,若△EOA的面積為2,則k= ;
(2) 連接CA、DE與CA是否平行?請(qǐng)說明理由;
(3) 是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對(duì)稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由。
(1)k=4
(2)連接AC,如右圖,設(shè)D(x,5),E(3,),則BD=3-x,BE=5-,
=,
∴
∴DE ∥ AC.
(3)假設(shè)存在點(diǎn)D滿足條件.設(shè)D(x,5),E(3,),則CD=x,
BD=3-x,BE=5-,AE=.
作EF ⊥ OC,垂足為F,如下圖
易證△B'CD ∽ △EFB',
∴,即,
∴B'F=,
∴OB'= B'F+OF= B'F+AE=+=
∴CB'=OC-OB'=5-
在Rt△B'CD中,CB'=5-,CD=x,B'D= BD=3-x
由勾股定理得,CB'²+CD²= B'D²
(5-)²+x²=(3-x)²
解這個(gè)方程得,x1=1.5(舍去),x2=0.96
∴滿足條件的點(diǎn)D存在,D的坐標(biāo)為D(0.96,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
25.如圖14,AB是⊙O的直徑,C、G是⊙O上兩點(diǎn),且AC = CG,過點(diǎn)C的直線CDBG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F.
(1)求證:CD是⊙O的切線.
(2)若,求E的度數(shù).
(3)連接AD,在(2)的條件下,若CD=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品。
(1) 如果隨機(jī)翻1張牌,那么抽中20元獎(jiǎng)品的概率為
(2) 如果隨機(jī)翻2張牌,且第一次翻過的牌不再參加下次翻牌,則所獲獎(jiǎng)品總值不低于30元的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ABC=90°,AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD,過點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF.給出以下四個(gè)結(jié)論:①;②若點(diǎn)D是AB的中點(diǎn),則AF=AB;③當(dāng)B、C、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則.其中正確的結(jié)論序號(hào)是( )
A.①② B.③④ C.①②③ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線a∥b,∠1 = 60°,∠2 = 40°,則∠3等于
(A) 40°. (B) 60°.(C) 80°. (D) 100°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com