精英家教網 > 初中數學 > 題目詳情
(2003•舟山)如圖,AC交⊙O于點B、C,AD切⊙O于點D,已知AB=2,AC=8,則AD的長為   
【答案】分析:AD是⊙O的切線,已知了割線AC和AB的長,可直接運用切割線定理求出AD的長.
解答:解:∵AD切⊙O于點D,
根據切割線定理得AD2=AB•AC;
∵AB=2,AC=8,
∴AD=4.
點評:此題主要考查的是切割線定理.
練習冊系列答案
相關習題

科目:初中數學 來源:2003年全國中考數學試題匯編《二次函數》(02)(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經過點B,則這條拋物線的關系式為   

查看答案和解析>>

科目:初中數學 來源:2003年浙江省舟山市中考數學試卷(解析版) 題型:填空題

(2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經過點B,則這條拋物線的關系式為   

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關系,證明你的結論.

查看答案和解析>>

科目:初中數學 來源:2003年浙江省舟山市中考數學試卷(解析版) 題型:選擇題

(2003•舟山)如圖是人字型屋架的設計圖,由AB,AC,BC,AD四根鋼條焊接而成,其中A,B,C,D均為焊接點,且AB=AC,D為BC的中點,現在焊接所需的四根鋼條已截好,且已標出BC的中點,如果接工身邊只有檢驗直角的角尺,那么為了準確快速地焊接,他首先應取的兩根鋼條及焊接點是( )

A.AB和BC焊接點B
B.AB和AC焊接點A
C.AB和AD焊接點A
D.AD和BC焊接點D

查看答案和解析>>

科目:初中數學 來源:2003年浙江省舟山市中考數學試卷(解析版) 題型:選擇題

(2003•舟山)如圖,用8塊相同的長方形地磚拼成一個矩形地面,則每塊長方形地磚的長和寬分別是( )

A.48cm,12cm
B.48cm,16cm
C.44cm,16cm
D.45cm,15cm

查看答案和解析>>

同步練習冊答案